Design of automatic gain correction system for silicon photomultiplier tube
-
摘要: 温度会使硅光电倍增管的增益产生较大的漂移,进而影响硅光电倍增管的增益精度。为了使硅光电倍增管增益不随温度发生较大变化,设计了硅光电倍增管的自动增益校正系统,包括基于单片机的高压电源设计与采集系统设计。高电压模块精确工作的温度范围为−10~60 ℃,电源噪声约为30 mV,满足硅光电倍增管性能测试的需求。采集系统经过扫频测试与激光照射测试,可以较好地通过60 MHz的交流信号,并将光信号转变为较明显的电信号。该系统可以向京邦公司的硅光电倍增管阵列JARY-TP3050-8X8C提供工作电压与采集电路。
-
关键词:
- SiPM /
- STM32 /
- 自动增益校正 /
- LM2576-ADJ /
- DS18B20
Abstract: The gain of silicon photomultiplier tube will drift greatly due to temperature variation, which will affect the gain accuracy of silicon photomultiplier tube. To realize that silicon photomultiplier tube gain does not change greatly with temperature variation, an automatic gain correction system for silicon photomultiplier tube is designed, including the design of a high voltage power supply and an acquisition system based on single chip microcomputer.The high voltage module can accurately operate in the temperature range of −10 ℃ to 60 ℃, and the power noise is about 30 mV, which can meet the requirements of silicon photomultiplier tube performance testing.Through frequency sweep test and laser irradiation test, the acquisition system can better pass the 60 MHz AC signal, and transform the optical signal into a more obvious electrical signal.The system provides a working voltage and acquisition circuit to Jingbon Compony’s silicon photomultiplier tube array JARY-TP3050-8X8C.-
Key words:
- SiPM /
- STM32 /
- automatic gain correction /
- LM2576-ADJ /
- DS18B20
-
表 1 测试结果表
Table 1. Results of experiments
designed temperature/℃ test temperature/℃ theoretical output voltage/V actual output voltage/V −20 −22.1 25.452 25.52 −10 −10 25.796 25.81 0 0.1 26.14 26.15 10 9.9 26.484 26.48 20 20.0 26.828 26.83 30 30.1 27.172 27.17 40 39.9 27.516 27.52 50 50.1 27.86 27.87 60 60.0 28.204 28.21 70 70.3 28.548 28.61 -
[1] 侯会良, 黄跃峰, 程懋松, 等. 小型智能程控SiPM电源设计与验证[J]. 核技术, 2020, 43:060402. (Hou Huiliang, Huang Yuefeng, Cheng Maosong, et al. Design and verification of small intelligent programmable SiPM power supply[J]. Nuclear Techniques, 2020, 43: 060402 doi: 10.11889/j.0253-3219.2020.hjs.43.060402Hou Huiliang, Huang Yuefeng, Cheng Maosong, et al. Design and verification of small intelligent programmable SiPM power supply[J]. Nuclear Techniques, 2020, 43: 060402 doi: 10.11889/j.0253-3219.2020.hjs.43.060402 [2] 高峰, 钱森, 宁哲, 等. 光电探测器件的单光电子谱数据获取[J]. 核技术, 2019, 42:100404. (Gao Feng, Qian Sen, Ning Zhe, et al. Data acquisition system for single photoelectron spectra of photoelectric detector[J]. Nuclear Techniques, 2019, 42: 100404 doi: 10.11889/j.0253-3219.2019.hjs.42.100404Gao Feng, Qian Sen, Ning Zhe, et al. Data acquisition system for single photoelectron spectra of photoelectric detector[J]. Nuclear Techniques, 2019, 42: 100404 doi: 10.11889/j.0253-3219.2019.hjs.42.100404 [3] 韩晓雪, 曾鸣, 龚光华, 等. 针对SiPM探测器的多通道读出电子学设计[J]. 清华大学学报(自然科学版), 2014, 54(6):695-699,718. (Han Xiaoxue, Zeng Ming, Gong Guanghua, et al. Multi-channel SiPM readout system[J]. Journal of Tsinghua University (Science and Technology), 2014, 54(6): 695-699,718Han Xiaoxue, Zeng Ming, Gong Guanghua, et al. Multi-channel SiPM readout system[J]. Journal of Tsinghua University (Science and Technology), 2014, 54(6): 695-699, 718 [4] Lightfoot P K, Barker G J, Mavrokoridis K, et al. Characterisation of a silicon photomultiplier device for applications in liquid argon based neutrino physics and dark matter searches[J]. Journal of Instrumentation, 2008, 3: P10001. [5] 方灿, 衡月昆, 梁静静, 等. 基于温度补偿的多通道MPPC增益稳定性及一致性研究[J]. 核电子学与探测技术, 2015, 35(6):527-530,534. (Fang Can, Heng Yuekun, Liang Jingjing, et al. 4×4 multi-channel MPPC gain stability and uniformity study based on the temperature compensation[J]. Nuclear Electronics & Detection Technology, 2015, 35(6): 527-530,534 doi: 10.3969/j.issn.0258-0934.2015.06.001Fang Can, Heng Yuekun, Liang Jingjing, et al. 4 ×4multi-channel MPPC gain stability and uniformity study based on the temperature compensation[J]. Nuclear Electronics & Detection Technology, 2015, 35(6): 527-530, 534 doi: 10.3969/j.issn.0258-0934.2015.06.001 [6] Eigen G. Gain stabilization of SiPMs and afterpulsing[J]. Journal of Physics:Conference Series, 2019, 1162: 012013. [7] Shukla R A, Achanta V G, Dugad S R, et al. Multi-channel programmable power supply with temperature compensation for silicon sensors[J]. Review of Scientific Instruments, 2016, 87: 015114. [8] Huh Y, Choi Y, Ho Jung J, et al. A method to stabilize the temperature dependent performance of G-APD arrays[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 772: 83-88. [9] 张猛超, 李东仓, 徐小恒, 等. 硅光电信增管探测器温度补偿电源设计[J]. 核电子学与探测技术, 2019, 39(6):781-785. (Zhang Mengchao, Li Dongcang, Xu Xiaoheng, et al. Design of temperature compensation power supply for SiPM detector[J]. Nuclear Electronics & Detection Technology, 2019, 39(6): 781-785Zhang Mengchao, Li Dongcang, Xu Xiaoheng, et al. Design of temperature compensation power supply for SiPM detector[J]. Nuclear Electronics & Detection Technology, 2019, 39(6): 781-785 [10] 范鹏, 许天鹏, 王石, 等. 硅光电倍增器件(SiPM)的自动增益校正[J]. 核电子学与探测技术, 2013, 33(1):4-7. (Fan Peng, Xu Tianpeng, Wang Shi, et al. An initial study of automatic gain stability of SiPM[J]. Nuclear Electronics & Detection Technology, 2013, 33(1): 4-7 doi: 10.3969/j.issn.0258-0934.2013.01.002Fan Peng, Xu Tianpeng, Wang Shi, et al. An initial study of automatic gain stability of SiPM[J]. Nuclear Electronics & Detection Technology, 2013, 33(1): 4-7 doi: 10.3969/j.issn.0258-0934.2013.01.002 [11] 尹士玉, 陈鹏宇, 马丽双, 等. SiPM低压电源模块性能研究[J]. 核技术, 2019, 42:090403. (Yin Shiyu, Chen Pengyu, Ma Lishuang, et al. Study of the low voltage power module for SiPM[J]. Nuclear Techniques, 2019, 42: 090403 doi: 10.11889/j.0253-3219.2019.hjs.42.090403Yin Shiyu, Chen Pengyu, Ma Lishuang, et al. Study of the low voltage power module for SiPM[J]. Nuclear Techniques, 2019, 42: 090403 doi: 10.11889/j.0253-3219.2019.hjs.42.090403 [12] 陈宗德, 王玥, 李晨晖, 等. PET应用中的硅光电倍增器研究[J]. 原子能科学技术, 2014, 48(s1):650-654. (Chen Zongde, Wang Yue, Li Chenhui, et al. Research of SiPM in PET application[J]. Atomic Energy Science and Technology, 2014, 48(s1): 650-654Chen Zongde, Wang Yue, Li Chenhui, et al. Research of SiPM in PET application[J]. Atomic Energy Science and Technology, 2014, 48(s1): 650-654 [13] 马付平, 张广鑫, 张高龙, 等. 多像素光子计数器(MPPC)的性能测试[J]. 物理与工程, 2015, 25(3):38-41. (Ma Fuping, Zhang Guangxin, Zhang Gaolong, et al. Performance test of muti-pixel photo counter (MPPC)[J]. Physics and Engineering, 2015, 25(3): 38-41 doi: 10.3969/j.issn.1009-7104.2015.03.005Ma Fuping, Zhang Guangxin, Zhang Gaolong, et al. Performance test of muti-pixel photo counter (MPPC)[J]. Physics and Engineering, 2015, 25(3): 38-41 doi: 10.3969/j.issn.1009-7104.2015.03.005 [14] 戴泽, 全林, 程晓磊, 等. 硅光电倍增探测器温度特性分析与实验[J]. 飞行器测控学报, 2015, 34(3):298-302. (Dai Ze, Quan Lin, Cheng Xiaolei, et al. Temperature characteristic analysis and experimental study of SiPM[J]. Journal of Spacecraft TT & C Technology, 2015, 34(3): 298-302Dai Ze, Quan Lin, Cheng Xiaolei, et al. Temperature characteristic analysis and experimental study of SiPM[J]. Journal of Spacecraft TT & C Technology, 2015, 34(3): 298-302 [15] 肖凤云, 王占军. 多像素光子计数器的性能研究[J]. 工业计量, 2019, 29(4):52-53. (Xiao Fengyun, Wang Zhanjun. Study on performance of Multi-pixel photon counter[J]. Industrial Metrology, 2019, 29(4): 52-53Xiao Fengyun, Wang Zhanjun. Study on performance of Multi-pixel photon counter[J]. Industrial Metrology, 2019, 29(4): 52-53 [16] Hu Tianpeng, Wang Shi. LM2576/LM2576HV Series SIMPLE SWITCHER® 3A step-down voltage regulator[R]. National Semiconductor, 2004. [17] 吴哲. 微弱荧光信号检测及处理技术研究[D]. 西安: 陕西师范大学, 2015Wu Zhe. Research on detection and processing technology of weak fluorescence signal[D]. Xi’an: Shaanxi Normal University, 2015