Development of a 240 kJ modularized pulsed power supply
-
摘要: 空间等离子体环境模拟与研究装置用于在地面模拟空间磁场和等离子体环境,需要在3.5 μH电感、0.8 mΩ电阻的环向场线圈负载上产生前沿130 μs、降流时间不大于1600 μs、峰值260 kA的脉冲电流,因此设计了一套模块化的电容器型放电电源。针对相对较小电感的负载,根据设计要求的放电波形和开关组件通流能力,考虑负载短路故障的情形,给出了保护电感、优化的模块数量等回路参数计算方法。进一步采用传输电缆作为能量传输,同时将电缆寄生电感作为保护电感的方案,研制了一套由4个模块组成的放电电源。研究结果表明,本文给出的电路理论计算结果与设计要求一致,放电试验进一步证明电源设计满足设计放电波形要求。Abstract: The space plasma environment research facility (SPERF) is used to simulate the space magnetic field and plasma environment on earth. To generate a pulse current across the 3.5 μH, 0.8 mΩ toroidal field (TF) coils, a modularized capacitor-based pulsed power supply (PPS) was built. The rise time of the pulse current was approximately 130 μs, and the peak current was 260 kA. To avoid damage to the PPS when the coil load was short-circuited, the circuit parameters of the PPS, such as the number of modules, the inductance of the protection inductor, were calculated based on current waveform requirements and the maximum ratings of the thyristor switch. Since the inductance of the coil load was relatively small, the output cable was used as both the transmission line and the protection inductor, and a 4-module PPS was designed and fabricated. Simulation results indicate that the 4-module PPS design meets the demand of both the current waveform and the maximum ratings of the thyristor switch, and the discharge test further proves the output current waveform of the PPS agrees with the simulation results.
-
Key words:
- pulsed power supply /
- modularized /
- protection inductor /
- thyristor switch /
- transmission cable
-
表 1 晶闸管器件主要额定参数
Table 1. Typical maximum ratings of the thyristor switch
maximum current/
kA(3 ms pulse width)critical rate of decrease of commutating on-state current (di/dt)/(kA·μs−1)
(duration between 10%~50% of maximum current)120 3 -
[1] Stenzel R L, Gekelman W. Laboratory experiments on current sheet disruptions, double layers turbulence and reconnection[M]//Kundu M R, Holman G D. Unstable Current Systems and Plasma Instabilities in Astrophysics. Dordrecht: Springer, 1985. [2] Melnik P A, Bushnell A H, Sieck P E, et al. Design of 5.5MJ charge dump power supply for the PPPL FLARE experiment[C]//2016 IEEE International Power Modulator and High Voltage Conference (IPMHVC). 2016. [3] Gekelman W, De Haas T, Daughton W, et al. Pulsating magnetic reconnection driven by three-dimensional flux-rope interactions[J]. Physical Review Letters, 2016, 116: 235101. doi: 10.1103/PhysRevLett.116.235101 [4] E Peng, Guan Jian, Ling Wenbin, et al. An 18.3 MJ charging and discharging pulsed power supply system for the Space Plasma Environment Research Facility (SPERF): Modular design method and component selection[J]. Review of Scientific Instruments, 2021, 92: 034709. doi: 10.1063/5.0036923 [5] E Peng, Guan Jian, Jin Chenggang, et al. An 18.3 MJ charging and discharging pulsed power supply system for the Space Plasma Environment Research Facility (SPERF): the subsystem for the magnetopause shape control coils[J]. Review of Scientific Instruments, 2021, 92: 064709. doi: 10.1063/5.0052725 [6] Wu Biao. Vlasov equation of plasma in magnetic field[J]. Journal of Physics A: Mathematical and General, 1999, 32(31): 5835-5844. doi: 10.1088/0305-4470/32/31/308 [7] Jorling J, Hofmann J, Weise T H G G, et al. 49 MJ pulsed power facility to produce high magnetic fields[C]//2007 16th IEEE International Pulsed Power Conference. 2007. [8] Portugall O, Lecouturier F, Marquez J, et al. Pulsed magnetic fields in Toulouse – past, present and future[J]. Physica B: Condensed Matter, 2001, 294/295: 579-584. doi: 10.1016/S0921-4526(00)00724-9 [9] Debray F, Frings P. State of the art and developments of high field magnets at the "Laboratoire National des Champs Magnétiques Intenses"[J]. Comptes Rendus Physique, 2013, 14(1): 2-14. doi: 10.1016/j.crhy.2012.11.002 [10] Perenboom J A A J, Maan J C, Van Breukelen M R, et al. Developments at the high field magnet laboratory in Nijmegen[J]. Journal of Low Temperature Physics, 2013, 170(5/6): 520-530. [11] Sitzman A, Surls D, Mallick J. Design, construction, and testing of an inductive pulsed-power supply for a small railgun[J]. IEEE Transactions on Magnetics, 2007, 43(1): 270-274. doi: 10.1109/TMAG.2006.887685 [12] Lee B, An S, Kim S H, et al. Operation of a 2.4-MJ pulsed power system for railgun[J]. IEEE Transactions on Plasma Science, 2014, 42(10): 2886-2890. doi: 10.1109/TPS.2013.2295225 [13] Ding Hongfa, Jiang Chengxi, Ding Tonghai, et al. Prototype test and manufacture of a modular 12.5 MJ capacitive pulsed power supply[J]. IEEE Transactions on Applied Superconductivity, 2010, 20(3): 1676-1680. doi: 10.1109/TASC.2009.2039785 [14] Lü Yiliang, Li Liang. Design on the protection inductor for the capacitor bank of Wuhan Pulsed High Magnetic Field facility[C]//2008 International Conference on Electrical Machines and Systems. 2008. [15] 彭波, 林福昌, 黄福勇, 等. 储能电容器组保护电感结构与保护方法的研究[J]. 高电压器, 2012, 48(6):48-52,55. (Peng Bo, Lin Fuchang, Huang Fuyong, et al. Protection inductor structure and protection methods for pulsed capacitor banks[J]. High Voltage Apparatus, 2012, 48(6): 48-52,55Peng Bo, Lin Fuchang, Huang Fuyong, et al. Protection inductor structure and protection methods for pulsed capacitor banks[J]. High Voltage Apparatus, 2012, 48(6): 48-52, 55 [16] 韩旻, 邹晓兵, 张贵新, 等. 脉冲功率技术基础[M]. 北京: 清华大学出版社, 2020Hank Min, Zou Xiaobing, Zhang Guixin. Pulse power technology base[M]. Beijing: Tsinghua University Press, 2010 [17] 蒋成玺. 脉冲强磁场电源系统设计及实现[D]. 武汉: 华中科技大学, 2013Jiang Chengxi. Design and realization of pulse power supply system for pulsed high magnetic field[D]. Wuhan: Huazhong University of Science and Technology, 2013 [18] Saxena A K, Rawool A M, Kaushik T C. Crowbar scheme based on plasma motion for pulsed power applications[J]. IEEE Transactions on Plasma Science, 2013, 41(10): 3058-3062. doi: 10.1109/TPS.2013.2279850