[1] |
Shi Wei, Jiang Huan, Li Mengxia, et al. Investigation of electric field threshold of GaAs photoconductive semiconductor switch triggered by 1.6 μJ laser diode[J]. Applied Physics Letters, 2014, 104: 042108. doi: 10.1063/1.4863738
|
[2] |
Loubriel G M, Zutavern F J, Baca A G, et al. Photoconductive semiconductor switches[J]. IEEE Transactions on Plasma Science, 1997, 25(2): 124-130. doi: 10.1109/27.602482
|
[3] |
施卫, 闫志巾. 雪崩倍增GaAs光电导太赫兹辐射源研究进展[J]. 物理学报, 2015, 64:228702. (Shi Wei, Yan Zhijin. Research progress on avalanche multiplication GaAs photoconductive terahertz emitter[J]. Acta Physica Sinica, 2015, 64: 228702 doi: 10.7498/aps.64.228702Shi Wei, Yan Zhijin. Research progress on avalanche multiplication GaAs photoconductive terahertz emitter[J]. Acta Physica Sinica, 2015, 64: 228702 doi: 10.7498/aps.64.228702
|
[4] |
Liu Xiaorong, Li Song. The effect of photoconductive semiconductor materials in improving the resolution of femtosecond streak camera[J]. IOP Conference Series: Materials Science and Engineering, 2020, 772: 012060. doi: 10.1088/1757-899X/772/1/012060
|
[5] |
Islam N E, Schamiloglu E, Fleddermann C B. Characterization of a semi-insulating GaAs photoconductive semiconductor switch for ultrawide band high power microwave applications[J]. Applied Physics Letters, 1998, 73(14): 1988-1990. doi: 10.1063/1.122344
|
[6] |
Mar A, Bacon L D, Loubriel G M. Device technology investigation: subsystems packaging study: feasibility of PCSS-based pulser for highly portable platforms[R]. SAND2002-2059, 2002: 2002-2059.
|
[7] |
Glover S F, Zutavern F J, Swalby M E, et al. Pulsed- and DC-charged PCSS-based trigger generators[J]. IEEE Transactions on Plasma Science, 2010, 38(10): 2701-2707. doi: 10.1109/TPS.2010.2049662
|
[8] |
Nunnally W C. Critical component requirements for compact pulse power system architectures[J]. IEEE Transactions on Plasma Science, 2005, 33(4): 1262-1267. doi: 10.1109/TPS.2005.852406
|
[9] |
严成锋, 施尔畏, 陈之战, 等. 超快大功率SiC光导开关的研究[J]. 无机材料学报, 2008, 23(3):425-428. (Yan Chengfeng, Shi Erwei, Chen Zhizhan, et al. Super fast and high power SiC photoconductive semiconductor switches[J]. Journal of Inorganic Materials, 2008, 23(3): 425-428 doi: 10.3321/j.issn:1000-324X.2008.03.002Yan Chengfeng, Shi Erwei, Chen Zhizhan, et al. Super fast and high power SiC photoconductive semiconductor switches[J]. Journal of Inorganic Materials, 2008, 23(3): 425-428 doi: 10.3321/j.issn:1000-324X.2008.03.002
|
[10] |
Tian Liqiang, Shi Wei, Feng Qingqing. Breakover mechanism of GaAs photoconductive switch triggering spark gap for high power applications[J]. Journal of Applied Physics, 2011, 110: 094507. doi: 10.1063/1.3658260
|
[11] |
Wang Langning, Jia Yongsheng, Liu Jinliang. Photoconductive semiconductor switch-based triggering with 1 ns jitter for trigatron[J]. Matter and Radiation at Extremes, 2018, 3(5): 256-260. doi: 10.1016/j.mre.2017.12.006
|
[12] |
Mar A, Loubriel G M, Zutavern F J, et al. Doped contacts for high-longevity optically activated, high-gain GaAs photoconductive semiconductor switches[J]. IEEE Transactions on Plasma Science, 2000, 28(5): 1507-1511. doi: 10.1109/27.901223
|
[13] |
Shi Wei, Ma Cheng, Li Mengxia. Research on the failure mechanism of high-power GaAs PCSS[J]. IEEE Transactions on Power Electronics, 2015, 30(5): 2427-2434. doi: 10.1109/TPEL.2014.2348493
|
[14] |
刘宏伟, 袁建强, 刘金锋, 等. 大功率GaAs光导开关寿命实验研究[J]. 强激光与粒子束, 2010, 22(4):795-798. (Liu Hongwei, Yuan Jianqiang, Liu Jinfeng, et al. Experimental investigation on lifetime of high power GaAs photoconductive semiconductor switch[J]. High Power Laser and Particle Beams, 2010, 22(4): 795-798 doi: 10.3788/HPLPB20102204.0795Liu Hongwei, Yuan Jianqiang, Liu Jinfeng, et al. Experimental investigation on lifetime of high power GaAs photoconductive semiconductor switch[J]. High Power Laser and Particle Beams, 2010, 22(4): 795-798 doi: 10.3788/HPLPB20102204.0795
|
[15] |
孙飞翔, 何晓雄, 常润发, 等. GaAs光导开关损伤机理研究[J]. 合肥工业大学学报(自然科学版), 2017, 40(4):497-501. (Sun Feixiang, He Xiaoxiong, Chang Runfa, et al. GaAs PCSS’s injuring mechanism[J]. Journal of Hefei University of Technology, 2017, 40(4): 497-501Sun Feixiang, He Xiaoxiong, Chang Runfa, et al. GaAs PCSS’s injuring mechanism[J]. Journal of Hefei University of Technology, 2017, 40(4): 497-501
|
[16] |
Hjalmarson H P, Kambour K, Myles C W, et al. Continuum models for electrical breakdown in photoconductive semiconductor switches[C]//16th IEEE International Pulsed Power Conference. 2007: 446-450.
|
[17] |
Kambour K, Hjalmarson H P, Zutavern F J, et al. Simulation of current filaments in photoconductive semiconductor switches[C]//15th IEEE International Pulsed Power Conference. 2005: 814-817.
|
[18] |
张同意, 石顺祥, 赵卫, 等. 深能级杂质对光导半导体开关非线性特性的影响[J]. 光子学报, 2003, 31(1):121-123. (Zhang Tongyi, Shi Shunxiang, Zhao Wei, et al. The effect of deep level impurity on the nonlinear performances of photoconductive semiconductor switches[J]. Acta Photonica Sinica, 2003, 31(1): 121-123Zhang Tongyi, Shi Shunxiang, Zhao Wei, et al. The effect of deep level impurity on the nonlinear performances of photoconductive semiconductor switches[J]. Acta Photonica Sinica, 2003, 31(1): 121-123
|
[19] |
Brinkmann R P, Schoenbach K H, Mazzola M S, et al. Analysis of time-dependent current transport in an optically controlled Cu-compensated GaAs switch[C]//Proceedings of SPIE 1632, Optically Activated Switching II. 1992: 262-273.
|
[20] |
刘鸿, 阮成礼. 本征砷化镓光导开关中的流注模型[J]. 科学通报, 2008, 53(18):2181-2185. ((Liu Hong, Ruan Chengli. Flow model in intrinsic gallium arsenide photoconductive switch[J]. Chinese Science Bulletin, 2008, 53(18): 2181-2185 doi: 10.3321/j.issn:0023-074X.2008.18.005(Liu Hong, Ruan Chengli. Flow model in intrinsic gallium arsenide photoconductive switch[J]. Chinese Science Bulletin, 2008, 53(18): 2181-2185. doi: 10.3321/j.issn:0023-074X.2008.18.005
|
[21] |
Ma Cheng, Shi Wei, Li Mengxia, et al. Impact of current filaments on the material and output characteristics of GaAs Photoconductive Switches[J]. IEEE Transactions on Electron Device, 2014, 61(7): 2432-2436. doi: 10.1109/TED.2014.2323052
|
[22] |
Hu Long, Xu Ming, Li Xin, et al. Performance investigation of bulk photoconductive semiconductor switch based on reversely biased p+-i-n+ structure[J]. Transactions on Electron Devices, 2020, 67(11): 4963-4969. doi: 10.1109/TED.2020.3025984
|
[23] |
Ma Cheng, Shi Wei, Dong Chengang, et al. 998 multiplication rate of GaAs avalanche semiconductor switch triggered by 0.567 nJ[J]. IEEE Access, 2020, 8: 116515-116519. doi: 10.1109/ACCESS.2020.3004054
|