留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

砷化镓光导开关的损伤形貌研究

沙慧茹 肖龙飞 栾崇彪 冯琢云 李阳凡 孙逊 胡小波 徐现刚

沙慧茹, 肖龙飞, 栾崇彪, 等. 砷化镓光导开关的损伤形貌研究[J]. 强激光与粒子束, 2022, 34: 095018. doi: 10.11884/HPLPB202234.210579
引用本文: 沙慧茹, 肖龙飞, 栾崇彪, 等. 砷化镓光导开关的损伤形貌研究[J]. 强激光与粒子束, 2022, 34: 095018. doi: 10.11884/HPLPB202234.210579
Sha Huiru, Xiao Longfei, Luan Chongbiao, et al. Damage morphology of GaAs photoconductive switch[J]. High Power Laser and Particle Beams, 2022, 34: 095018. doi: 10.11884/HPLPB202234.210579
Citation: Sha Huiru, Xiao Longfei, Luan Chongbiao, et al. Damage morphology of GaAs photoconductive switch[J]. High Power Laser and Particle Beams, 2022, 34: 095018. doi: 10.11884/HPLPB202234.210579

砷化镓光导开关的损伤形貌研究

doi: 10.11884/HPLPB202234.210579
基金项目: 山东省重点研发计划项目(2019JMRH0901);山东省重点研发计划项目(2019JMRH0201)
详细信息
    作者简介:

    沙慧茹,202034074@mail.sdu.edu.cn

    通讯作者:

    肖龙飞,xiaolongfei@sdu.edu.cn

  • 中图分类号: TN36

Damage morphology of GaAs photoconductive switch

  • 摘要: 制作了同面型砷化镓光导开关,并测试了其导通性能。在偏置电压8 kV、激光能量10 mJ、重复频率10 Hz的条件下,研究了光导开关触发104次后器件表面的损伤形貌。利用激光扫描共聚焦显微镜,对电极边缘及电极间的损伤形貌进行分析,研究发现阳极边缘由于热积累形成热损伤,而阴极边缘的热损伤来源于热应力,并对电极间损伤形貌进行细致表征及分类。
  • 图  1  砷化镓光导开关结构示意图

    Figure  1.  Structural schematic diagram of GaAs photoconductive switch

    图  2  砷化镓光导开关测试电路图和光路图

    Figure  2.  Confocal response curves with different annular pupils

    图  3  光导开关在不同偏置电压下的电流值及光导开关的最小导通电阻值

    Figure  3.  Current value of photoconductive switch under different bias voltage and minimum on-resistance value of photoconductive switch

    图  4  光导开关在不同触发能量下的电流值及光导开关的最小导通电阻值

    Figure  4.  Current value of photoconductive switch at different triggering energies and minimum on-resistance value of photoconductive switch

    图  5  光导开关电流值与触发次数的关系图

    Figure  5.  Current value of photoconductive at different triggering number

    图  6  开关损伤表面形貌图

    Figure  6.  Analysis of damaged surface morphology of switches

    图  7  热应力所引起的破坏

    Figure  7.  Diagram of damage between two electrodes of switch

    图  8  两个电极之间不同形式的损伤

    Figure  8.  Damage caused by thermal stress

    (a), (b) single point injury; (c) diffuse point injury; (d) twin point injury; (e), (f) strip damage

    图  9  损伤层面三维效果图

    Figure  9.  3-D effect map of damage layer

    (a), (b) single point injury; (c) flake point injury; (d) twin point injury; (e), (f) strip damage

  • [1] Shi Wei, Jiang Huan, Li Mengxia, et al. Investigation of electric field threshold of GaAs photoconductive semiconductor switch triggered by 1.6 μJ laser diode[J]. Applied Physics Letters, 2014, 104: 042108. doi: 10.1063/1.4863738
    [2] Loubriel G M, Zutavern F J, Baca A G, et al. Photoconductive semiconductor switches[J]. IEEE Transactions on Plasma Science, 1997, 25(2): 124-130. doi: 10.1109/27.602482
    [3] 施卫, 闫志巾. 雪崩倍增GaAs光电导太赫兹辐射源研究进展[J]. 物理学报, 2015, 64:228702. (Shi Wei, Yan Zhijin. Research progress on avalanche multiplication GaAs photoconductive terahertz emitter[J]. Acta Physica Sinica, 2015, 64: 228702 doi: 10.7498/aps.64.228702

    Shi Wei, Yan Zhijin. Research progress on avalanche multiplication GaAs photoconductive terahertz emitter[J]. Acta Physica Sinica, 2015, 64: 228702 doi: 10.7498/aps.64.228702
    [4] Liu Xiaorong, Li Song. The effect of photoconductive semiconductor materials in improving the resolution of femtosecond streak camera[J]. IOP Conference Series: Materials Science and Engineering, 2020, 772: 012060. doi: 10.1088/1757-899X/772/1/012060
    [5] Islam N E, Schamiloglu E, Fleddermann C B. Characterization of a semi-insulating GaAs photoconductive semiconductor switch for ultrawide band high power microwave applications[J]. Applied Physics Letters, 1998, 73(14): 1988-1990. doi: 10.1063/1.122344
    [6] Mar A, Bacon L D, Loubriel G M. Device technology investigation: subsystems packaging study: feasibility of PCSS-based pulser for highly portable platforms[R]. SAND2002-2059, 2002: 2002-2059.
    [7] Glover S F, Zutavern F J, Swalby M E, et al. Pulsed- and DC-charged PCSS-based trigger generators[J]. IEEE Transactions on Plasma Science, 2010, 38(10): 2701-2707. doi: 10.1109/TPS.2010.2049662
    [8] Nunnally W C. Critical component requirements for compact pulse power system architectures[J]. IEEE Transactions on Plasma Science, 2005, 33(4): 1262-1267. doi: 10.1109/TPS.2005.852406
    [9] 严成锋, 施尔畏, 陈之战, 等. 超快大功率SiC光导开关的研究[J]. 无机材料学报, 2008, 23(3):425-428. (Yan Chengfeng, Shi Erwei, Chen Zhizhan, et al. Super fast and high power SiC photoconductive semiconductor switches[J]. Journal of Inorganic Materials, 2008, 23(3): 425-428 doi: 10.3321/j.issn:1000-324X.2008.03.002

    Yan Chengfeng, Shi Erwei, Chen Zhizhan, et al. Super fast and high power SiC photoconductive semiconductor switches[J]. Journal of Inorganic Materials, 2008, 23(3): 425-428 doi: 10.3321/j.issn:1000-324X.2008.03.002
    [10] Tian Liqiang, Shi Wei, Feng Qingqing. Breakover mechanism of GaAs photoconductive switch triggering spark gap for high power applications[J]. Journal of Applied Physics, 2011, 110: 094507. doi: 10.1063/1.3658260
    [11] Wang Langning, Jia Yongsheng, Liu Jinliang. Photoconductive semiconductor switch-based triggering with 1 ns jitter for trigatron[J]. Matter and Radiation at Extremes, 2018, 3(5): 256-260. doi: 10.1016/j.mre.2017.12.006
    [12] Mar A, Loubriel G M, Zutavern F J, et al. Doped contacts for high-longevity optically activated, high-gain GaAs photoconductive semiconductor switches[J]. IEEE Transactions on Plasma Science, 2000, 28(5): 1507-1511. doi: 10.1109/27.901223
    [13] Shi Wei, Ma Cheng, Li Mengxia. Research on the failure mechanism of high-power GaAs PCSS[J]. IEEE Transactions on Power Electronics, 2015, 30(5): 2427-2434. doi: 10.1109/TPEL.2014.2348493
    [14] 刘宏伟, 袁建强, 刘金锋, 等. 大功率GaAs光导开关寿命实验研究[J]. 强激光与粒子束, 2010, 22(4):795-798. (Liu Hongwei, Yuan Jianqiang, Liu Jinfeng, et al. Experimental investigation on lifetime of high power GaAs photoconductive semiconductor switch[J]. High Power Laser and Particle Beams, 2010, 22(4): 795-798 doi: 10.3788/HPLPB20102204.0795

    Liu Hongwei, Yuan Jianqiang, Liu Jinfeng, et al. Experimental investigation on lifetime of high power GaAs photoconductive semiconductor switch[J]. High Power Laser and Particle Beams, 2010, 22(4): 795-798 doi: 10.3788/HPLPB20102204.0795
    [15] 孙飞翔, 何晓雄, 常润发, 等. GaAs光导开关损伤机理研究[J]. 合肥工业大学学报(自然科学版), 2017, 40(4):497-501. (Sun Feixiang, He Xiaoxiong, Chang Runfa, et al. GaAs PCSS’s injuring mechanism[J]. Journal of Hefei University of Technology, 2017, 40(4): 497-501

    Sun Feixiang, He Xiaoxiong, Chang Runfa, et al. GaAs PCSS’s injuring mechanism[J]. Journal of Hefei University of Technology, 2017, 40(4): 497-501
    [16] Hjalmarson H P, Kambour K, Myles C W, et al. Continuum models for electrical breakdown in photoconductive semiconductor switches[C]//16th IEEE International Pulsed Power Conference. 2007: 446-450.
    [17] Kambour K, Hjalmarson H P, Zutavern F J, et al. Simulation of current filaments in photoconductive semiconductor switches[C]//15th IEEE International Pulsed Power Conference. 2005: 814-817.
    [18] 张同意, 石顺祥, 赵卫, 等. 深能级杂质对光导半导体开关非线性特性的影响[J]. 光子学报, 2003, 31(1):121-123. (Zhang Tongyi, Shi Shunxiang, Zhao Wei, et al. The effect of deep level impurity on the nonlinear performances of photoconductive semiconductor switches[J]. Acta Photonica Sinica, 2003, 31(1): 121-123

    Zhang Tongyi, Shi Shunxiang, Zhao Wei, et al. The effect of deep level impurity on the nonlinear performances of photoconductive semiconductor switches[J]. Acta Photonica Sinica, 2003, 31(1): 121-123
    [19] Brinkmann R P, Schoenbach K H, Mazzola M S, et al. Analysis of time-dependent current transport in an optically controlled Cu-compensated GaAs switch[C]//Proceedings of SPIE 1632, Optically Activated Switching II. 1992: 262-273.
    [20] 刘鸿, 阮成礼. 本征砷化镓光导开关中的流注模型[J]. 科学通报, 2008, 53(18):2181-2185. ((Liu Hong, Ruan Chengli. Flow model in intrinsic gallium arsenide photoconductive switch[J]. Chinese Science Bulletin, 2008, 53(18): 2181-2185 doi: 10.3321/j.issn:0023-074X.2008.18.005

    (Liu Hong, Ruan Chengli. Flow model in intrinsic gallium arsenide photoconductive switch[J]. Chinese Science Bulletin, 2008, 53(18): 2181-2185. doi: 10.3321/j.issn:0023-074X.2008.18.005
    [21] Ma Cheng, Shi Wei, Li Mengxia, et al. Impact of current filaments on the material and output characteristics of GaAs Photoconductive Switches[J]. IEEE Transactions on Electron Device, 2014, 61(7): 2432-2436. doi: 10.1109/TED.2014.2323052
    [22] Hu Long, Xu Ming, Li Xin, et al. Performance investigation of bulk photoconductive semiconductor switch based on reversely biased p+-i-n+ structure[J]. Transactions on Electron Devices, 2020, 67(11): 4963-4969. doi: 10.1109/TED.2020.3025984
    [23] Ma Cheng, Shi Wei, Dong Chengang, et al. 998 multiplication rate of GaAs avalanche semiconductor switch triggered by 0.567 nJ[J]. IEEE Access, 2020, 8: 116515-116519. doi: 10.1109/ACCESS.2020.3004054
  • 加载中
图(9)
计量
  • 文章访问数:  660
  • HTML全文浏览量:  192
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-30
  • 修回日期:  2022-04-12
  • 网络出版日期:  2022-04-18
  • 刊出日期:  2022-06-17

目录

    /

    返回文章
    返回