留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全固态电感储能形成线纳秒短脉冲功率调制器

马剑豪 余亮 马久欣 贺大钊 董守龙 姚陈果

马剑豪, 余亮, 马久欣, 等. 全固态电感储能形成线纳秒短脉冲功率调制器[J]. 强激光与粒子束, 2022, 34: 095001. doi: 10.11884/HPLPB202234.210580
引用本文: 马剑豪, 余亮, 马久欣, 等. 全固态电感储能形成线纳秒短脉冲功率调制器[J]. 强激光与粒子束, 2022, 34: 095001. doi: 10.11884/HPLPB202234.210580
Ma Jianhao, Yu Liang, Ma Jiuxin, et al. All-solid-state inductive energy storage pulse forming line nanosecond short pulse power modulator[J]. High Power Laser and Particle Beams, 2022, 34: 095001. doi: 10.11884/HPLPB202234.210580
Citation: Ma Jianhao, Yu Liang, Ma Jiuxin, et al. All-solid-state inductive energy storage pulse forming line nanosecond short pulse power modulator[J]. High Power Laser and Particle Beams, 2022, 34: 095001. doi: 10.11884/HPLPB202234.210580

全固态电感储能形成线纳秒短脉冲功率调制器

doi: 10.11884/HPLPB202234.210580
基金项目: 国家自然科学基金项目(51907011)
详细信息
    作者简介:

    马剑豪,majianhao@cqu.edu.cn

    通讯作者:

    余 亮,yu_liang@cqu.edu.cn

  • 中图分类号: TM85

All-solid-state inductive energy storage pulse forming line nanosecond short pulse power modulator

  • 摘要: 全固态电感储能型脉冲形成线调制器是实现高重复频率、电压高增益和短脉冲输出的一种全新方案。但开关非理想的动态特性和传输线固定的物理空间尺寸限制,难以实现高压短脉冲的产生和调控。为解决上述难题,通过电磁场分析建立了碳化硅场效应器件开关驱动模型,发现高速驱动和开关器件低寄生参数能有效改善开关动态特性,提出了板上高速开关及驱动集成设计解决方案。基于波过程分析和多开关时序逻辑控制理论,提出多开关削波电路拓扑方法和主动负载阻抗调制技术。实验结果表明,该调制器可产生上升时间2.1 ns,下降时间3.5 ns,脉冲宽度5.1 ns的方波短脉冲,并且脉冲宽度5~20 ns连续可调。10级叠加后验证了调整器高压能力,初级储能充电电压25 V时,电压增益可达336倍,重复频率200 kHz。
  • 图  1  电脉冲前沿干扰等效电路

    Figure  1.  Electric pulse leading edge interference equivalent circuit

    图  2  耦合干扰传递路径

    Figure  2.  Coupling interference transmission path

    图  3  电感储能形成线脉宽调制主动电磁波调控拓扑

    Figure  3.  Topology of series inductive energy pulse forming line (SIE_PFL)

    图  4  SIE_PFL的控制逻辑及输出波形

    Figure  4.  SIE_PFL control logic and output pulse

    图  5  IE_PFL重载自适应作用原理电路

    Figure  5.  Principle circuit of IE_PFL heavy load adaptive function

    图  6  层叠封装设计结果

    Figure  6.  Simulation results and picture of ULI_PoP

    图  7  超快栅极驱动与常见栅极驱动对比

    Figure  7.  Comparison of ultra-fast gate driver and common gate driver

    图  8  脉宽调制波形

    Figure  8.  Pulse width modulation

    图  9  调制的5 ns方波波形

    Figure  9.  Waveform of modulated 5 ns rectangular wave

    图  10  重载自适应输出波形

    Figure  10.  Heavy load adaptive output pulse

    图  11  多级堆叠实验结果

    Figure  11.  Multi-stage stacking experiment results

    图  12  200 kHz重频运行波形

    Figure  12.  200 kHz repetition rate pulse

    表  1  三种栅极驱动对比结果

    Table  1.   Results of experiments

    pulse duration/nstime
    delay/ns
    rise
    time/ns
    fall
    time/ns
    rising
    overshoot/V
    falling
    overshoot/V
    on-peak
    current/A
    off-peak
    current/A
    IXDN609108.633.26.96.52.13.19.212.8
    IXRFD630102.224.54.45.16.24.820.213.6
    GaN_E_driver101.611.22.33.83.22.527.325.2
    下载: 导出CSV
  • [1] 丛培天. 中国脉冲功率科技进展简述[J]. 强激光与粒子束, 2020, 32:025002. (Cong Peitian. Review of Chinese pulsed power science and technology[J]. High Power Laser and Particle Beams, 2020, 32: 025002 doi: 10.11884/HPLPB202032.200040

    Cong Peitian. Review of Chinese pulsed power science and technology[J]. High Power Laser and Particle Beams, 2020, 32: 025002 doi: 10.11884/HPLPB202032.200040
    [2] 江伟华. 高重复频率脉冲功率技术及其应用: (1)概述[J]. 强激光与粒子束, 2012, 24(1):10-15. (Jiang Weihua. Repetition rate pulsed power technology and its applications: (I) Introduction[J]. High Power Laser and Particle Beams, 2012, 24(1): 10-15 doi: 10.3788/HPLPB20122401.0010

    Jiang Weihua. Repetition rate pulsed power technology and its applications: (I) Introduction[J]. High Power Laser and Particle Beams, 2012, 24(1): 10-15 doi: 10.3788/HPLPB20122401.0010
    [3] Jiang Weihua, Yatsui K, Takayama K, et al. Compact solid-state switched pulsed power and its applications[J]. Proceedings of the IEEE, 2004, 92(7): 1180-1196. doi: 10.1109/JPROC.2004.829003
    [4] 邵涛, 章程, 王瑞雪, 等. 大气压脉冲气体放电与等离子体应用[J]. 高电压技术, 2016, 42(3):685-705. (Shao Tao, Zhang Cheng, Wang Ruixue, et al. Atmospheric-pressure pulsed gas discharge and pulsed plasma application[J]. High Voltage Engineering, 2016, 42(3): 685-705 doi: 10.13336/j.1003-6520.hve.20160308018

    Shao Tao, Zhang Cheng, Wang Ruixue, et al. Atmospheric-pressure pulsed gas discharge and pulsed plasma application[J]. High Voltage Engineering, 2016, 42(3): 685-705 doi: 10.13336/j.1003-6520.hve.20160308018
    [5] Yao Chenguo, Hu Xiaoqian, Mi Yan, et al. Window effect of pulsed electric field on biological cells[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16(5): 1259-1266. doi: 10.1109/TDEI.2009.5293936
    [6] Malik M A, Schoenbach K H, Abdel-Fattah T M, et al. Low cost compact nanosecond pulsed plasma system for environmental and biomedical applications[J]. Plasma Chemistry and Plasma Processing, 2017, 37(1): 59-76. doi: 10.1007/s11090-016-9747-9
    [7] Zhao Zhongyong, Yao Chenguo, Hashemnia N, et al. Determination of nanosecond pulse parameters on transfer function measurement for power transformer winding deformation[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(6): 3761-3770. doi: 10.1109/TDEI.2016.005928
    [8] Buttram M. Some future directions for repetitive pulsed power[J]. IEEE Transactions on Plasma Science, 2002, 30(1): 262-266. doi: 10.1109/TPS.2002.1003869
    [9] Elgenedy M A, Darwish A, Ahmed S, et al. A modular multilevel generic pulse-waveform generator for pulsed electric field applications[J]. IEEE Transactions on Plasma Science, 2017, 45(9): 2527-2535. doi: 10.1109/TPS.2017.2727068
    [10] Azizi M, van Oorschot J J, Huiskamp T. Ultrafast switching of SiC MOSFETs for high-voltage pulsed-power circuits[J]. IEEE Transactions on Plasma Science, 2020, 48(12): 4262-4272. doi: 10.1109/TPS.2020.3039372
    [11] 江伟华. 高重复频率脉冲功率技术及其应用: (4)半导体开关的特长与局限性[J]. 强激光与粒子束, 2013, 25(3):537-543. (Jiang Weihua. Repetition rate pulsed power technology and its applications: (IV) Advantage and limitation of semiconductor switches[J]. High Power Laser and Particle Beams, 2013, 25(3): 537-543 doi: 10.3788/HPLPB20132503.0537

    Jiang Weihua. Repetition rate pulsed power technology and its applications: (IV) Advantage and limitation of semiconductor switches[J]. High Power Laser and Particle Beams, 2013, 25(3): 537-543 doi: 10.3788/HPLPB20132503.0537
    [12] 余亮, 須貝太一, 德地明, 等. 电感储能型脉冲形成线高重复频率脉冲功率发生器[J]. 强激光与粒子束, 2018, 30:025006. (Yu Liang, Sugai T, Tokuchi A, et al. Repetitive pulsed power generator based on inductive-energy-storage pulse forming line[J]. High Power Laser and Particle Beams, 2018, 30: 025006 doi: 10.11884/HPLPB201830.170390

    Yu Liang, Sugai T, Tokuchi A, et al. Repetitive pulsed power generator based on inductive-energy-storage pulse forming line[J]. High Power Laser and Particle Beams, 2018, 30: 025006 doi: 10.11884/HPLPB201830.170390
    [13] Yu Liang, Jiu Zezheng, Sugai T, et al. Pulsed voltage adder topology based on inductive Blumlein lines[J]. IEEE Transactions on Plasma Science, 2018, 46(5): 1816-1820. doi: 10.1109/TPS.2018.2820103
    [14] Yu Liang, Feng Yu, Sugai T, et al. Voltage adding of pulse forming lines using inductive energy storage[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(4): 2211-2215. doi: 10.1109/TDEI.2017.006421
    [15] Ma Jianhao, Dong Shoulong, Liu Hongmei, et al. A high-gain nanosecond pulse generator based on inductor energy storage and pulse forming line voltage superposition[C]//2019 IEEE Pulsed Power & Plasma Science (PPPS). 2019: 1-4.
    [16] 张适昌, 严萍, 王珏, 等. 民用脉冲功率源的进展与展望[J]. 高电压技术, 2009, 35(3):618-631. (Zhang Shichang, Yan Ping, Wang Jue, et al. Development situation and trends of pulsed power sources for civil applications[J]. High Voltage Engineering, 2009, 35(3): 618-631 doi: 10.13336/j.1003-6520.hve.2009.03.043

    Zhang Shichang, Yan Ping, Wang Jue, et al. Development situation and trends of pulsed power sources for civil applications[J]. High Voltage Engineering, 2009, 35(3): 618-631 doi: 10.13336/j.1003-6520.hve.2009.03.043
    [17] de Angelis A, Kolb J F, Zeni L, et al. Kilovolt Blumlein pulse generator with variable pulse duration and polarity[J]. Review of Scientific Instruments, 2008, 79: 044301. doi: 10.1063/1.2901609
    [18] Canacsinh H, Redondo L M, Silva J F, et al. Solid-state bipolar Marx modulator modeling[J]. IEEE Transactions on Plasma Science, 2014, 42(10): 3048-3056. doi: 10.1109/TPS.2014.2337716
    [19] Peftitsis D, Rabkowski J. Gate and base drivers for silicon carbide power transistors: an overview[J]. IEEE Transactions on Power Electronics, 2016, 31(10): 7194-7213.
    [20] Ning Puqi, Lai Rixin, Huff D, et al. SiC wirebond multichip phase-leg module packaging design and testing for harsh environment[J]. IEEE Transactions on Power Electronics, 2010, 25(1): 16-23. doi: 10.1109/TPEL.2009.2027324
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  727
  • HTML全文浏览量:  199
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-31
  • 修回日期:  2022-06-13
  • 网络出版日期:  2022-06-20
  • 刊出日期:  2022-06-17

目录

    /

    返回文章
    返回