Effect of high-current pulsed arc on the evaporation characteristics of graphite electrode
-
摘要: 气体开关电弧的热侵蚀作用是电极损耗的主要成因。石墨电极在电弧作用下发生蒸发并在多次放电后有明显的质量损耗,改变了开关内的气体环境和电极间距,导致开关动作可靠性降低。为研究石墨电极在脉冲电弧冲击下的侵蚀特征,基于开关电弧瞬态扩散特征和石墨材料参数,在弧根区域建立了电弧-电极能量耦合模型,得到了等离子体-固体区域的传热特性。考虑石墨电极的相变特征,计算瞬态热作用下石墨电极的加热范围以及临界相变点,研究瞬态电弧热冲击作用下的石墨电极相变机制。研究结果表明,电弧-电极界面热流主要集中在电弧接触面中心,电弧沉积的能量密度最高可达109 W/m2,石墨在电流上升初期基本处于加热状态,在能量积聚作用下,石墨转变为升华状态,传热强度随半径急剧衰减,蒸发区域略小于电弧半径。通过实验记录了5种开关工况下石墨电极烧蚀形貌和质量损失情况,结果表明,电极质量损失与电弧沉积在电极表面的能量线性相关,近似为0.015 mg/J。研究了电弧关键参数对电极质量损失速率的影响,为延缓电极损耗提供数据支撑。Abstract: The thermal erosion of arc is the main cause of electrode loss in the spark gap switch. The graphite electrode will evaporate and constantly undergo mass loss under the effect of the arc, which changes the gas environment in switch and the electrode distance, resulting in decreased reliability of the switch operation. To obtain erosion characteristics of graphite electrode under high-current pulse arc, the energy coupling model between the switching arc and graphite electrode is established based on the switching arc transient diffusion characteristics and graphite material parameters, and the heat transfer characteristics of plasma-solid region is obtained. Considering the phase change characteristics of graphite electrode, the heating range and critical phase change point of graphite electrode under transient thermal effect is calculated, and the phase change mechanism of graphite electrode under transient thermal shock of the arc is studied. The study results indicate that the heat flux of the arc-electrode interface is mainly concentrated in the center of the arc contact surface, and the energy density of arc deposition can reach up to 109 W/m2. Graphite is basically in a heating state at the beginning of the current rise, under the effect of energy accumulation, the graphite transforms into sublimation state. The heat transfer intensity decreases sharply with the radius decreasing, and the evaporation radius is slightly smaller than the arc radius. The ablation morphology and mass loss of graphite electrode under five different switching conditions were recorded through experiments. The experimental results show that the electrode mass loss is linearly related to the energy deposited on the electrode surface by the arc, approximately 0.015 mg/J. This paper studies the influence of arc key parameters on electrode mass-loss rate, and provides a theoretical and experimental basis for slowing electrode loss.
-
Key words:
- pulse discharge /
- spark-gap switch /
- graphite electrode /
- switching arc /
- electrode erosion
-
表 1 计算模型边界条件的设置
Table 1. Setting of boundary conditions of MHD model
boundary type temperature/K electric potential magnetic potential AB, EF wall 1000 ${{\partial \varphi } \mathord{\left/ {\vphantom {{\partial \varphi } {\partial n}}} \right. } {\partial n}} = 0$ ${{\partial A} \mathord{\left/ {\vphantom {{\partial A} {\partial n}}} \right. } {\partial n}} = 0$ BC, DE, FG, HA wall 1000 ${{\partial \varphi } \mathord{\left/ {\vphantom {{\partial \varphi } {\partial n}}} \right. } {\partial n}} = 0$ ${{\partial A} \mathord{\left/ {\vphantom {{\partial A} {\partial n}}} \right. } {\partial n}} = 0$ CD wall (cathode) 1000 $j = - \sigma {{\partial \varphi } \mathord{\left/ {\vphantom {{\partial \varphi } {\partial n}}} \right. } {\partial n}}$ ${{\partial A} \mathord{\left/ {\vphantom {{\partial A} {\partial n}}} \right. } {\partial n}} = 0$ GH wall (anode) 1000 $\varphi = 0$ ${{\partial A} \mathord{\left/ {\vphantom {{\partial A} {\partial n}}} \right. } {\partial n}} = 0$ -
[1] 何伟, 李黎, 郑万国, 等. 2.0 MJ脉冲功率源的500 kA气体开关系统[J]. 强激光与粒子束, 2013, 25(5):1293-1297. (He Wei, Li Li, Zheng Wanguo, et al. 500 kA switch-trigger system for 2.0 MJ capacitive pulsed power supply[J]. High Power Laser and Particle Beams, 2013, 25(5): 1293-1297 doi: 10.3788/HPLPB20132505.1293He Wei, Li Li, Zheng Wanguo, et al. 500 kA switch-trigger system for 2.0 MJ capacitive pulsed power supply[J]. High Power Laser and Particle Beams, 2013, 25(5): 1293-1297 doi: 10.3788/HPLPB20132505.1293 [2] Donaldson A L, Hagler M O, Kristiansen M, et al. Electrode erosion phenomena in a high-energy pulsed discharge[J]. IEEE Transactions on Plasma Science, 1984, 12(1): 28-38. doi: 10.1109/TPS.1984.4316289 [3] 罗城, 丛培天, 张天洋, 等. 气体火花开关电极烧蚀研究综述[J]. 强激光与粒子束, 2020, 32:105001. (Luo Cheng, Cong Peitian, Zhang Tianyang, et al. Review of the research on electrode erosion of gas spark switch[J]. High Power Laser and Particle Beams, 2020, 32: 105001 doi: doi:10.11884/HPLPB202032.200114Luo Cheng, Cong Peitian, Zhang Tianyang, et al. Review of the research on electrode erosion of gas spark switch[J]. High Power Laser and Particle Beams, 2020, 32: 105001 doi: doi:10.11884/HPLPB202032.200114 [4] 刘轩东, 沈曦, 李晓昂, 等. 脉冲作用下气体火花开关电极熔蚀研究[J]. 高电压技术, 2017, 43(9):3070-3077. (Liu Xuandong, Shen Xi, Li Xiao’ang, et al. Researches on electrode erosion of gas spark switch under pulsed current[J]. High Voltage Engineering, 2017, 43(9): 3070-3077Liu Xuandong, Shen Xi, Li Xiao’ang, et al. Researches on electrode erosion of gas spark switch under pulsed current[J]. High Voltage Engineering, 2017, 43(9): 3070-3077 [5] 饭田修一, 大野和郞, 神前熙, 等. 物理学常用数表[M]. 北京: 科学出版社, 1979Ida S, Ono K, Kozaki H. Data on physics in common use[M]. Beijing: Science Press, 1979 [6] Donaldson A, Kristiansen M, Watson A, et al. Electrode erosion in high current, high energy transient arcs[J]. IEEE Transactions on Magnetics, 1986, 22(6): 1441-1447. doi: 10.1109/TMAG.1986.1064638 [7] Li Xiao’ang, Liu Xuandong, Zeng Fanhui, et al. Ejection of electrode molten droplet and its effect on the degradation of insulator in gas spark switches[J]. IEEE Transactions on Plasma Science, 2015, 43(4): 1049-1053. doi: 10.1109/TPS.2015.2408607 [8] Xiang Junting, Tanaka K, Chen F F, et al. Modelling and measurements of gas tungsten arc welding in argon–helium mixtures with metal vapour[J]. Welding in the World, 2021, 65(4): 767-783. doi: 10.1007/s40194-020-01053-4 [9] Nielsen T, Kaddani A, Zahrai S. Modelling evaporating metal droplets in ablation controlled electric arcs[J]. Journal of Physics D: Applied Physics, 2001, 34(13): 2022-2031. doi: 10.1088/0022-3727/34/13/313 [10] Murphy A B. The effects of metal vapour in arc welding[J]. Journal of Physics D: Applied Physics, 2010, 43: 434001. doi: 10.1088/0022-3727/43/43/434001 [11] 戴宏宇, 沈昊, 李黎. 石墨电极气体开关中等离子体弧区碳氧反应效率研究[J]. 强激光与粒子束, 2021, 33:065015. (Dai Hongyu, Shen Hao, Li Li. Research on plasma arc oxidation efficiency of spark gap switch with graphite electrodes[J]. High Power Laser and Particle Beams, 2021, 33: 065015 doi: 10.11884/HPLPB202133.210084Dai Hongyu, Shen Hao, Li Li. Research on plasma arc oxidation efficiency of spark gap switch with graphite electrodes[J]. High Power Laser and Particle Beams, 2021, 33: 065015 doi: 10.11884/HPLPB202133.210084 [12] McKelliget J, Szekely J. Heat transfer and fluid flow in the welding arc[J]. Metallurgical Transactions A, 1986, 17(7): 1139-1148. doi: 10.1007/BF02665312 [13] Lowke J J. A unified theory of arcs and their electrodes[J]. Journal de Physique IV, 1997, 7(C4): C4-283-C4-294. [14] Zhu Peiyuan, Lowke J J, Morrow R. A unified theory of free burning arcs, cathode sheaths and cathodes[J]. Journal of Physics D: Applied Physics, 1992, 25(8): 1221-1230. doi: 10.1088/0022-3727/25/8/011 [15] Barrett J, Clement C. Kinetic evaporation and condensation rates and their coefficients[J]. Journal of Colloid and Interface Science, 1992, 150(2): 352-364. doi: 10.1016/0021-9797(92)90205-Z [16] 程月, 俞哲, 李金懋, 等. 氩气电弧等离子体炬提纯大鳞片石墨研究[J]. 强激光与粒子束, 2021, 33:065021. (Cheng Yue, Yu Zhe, Li Jinmao, et al. Study on purification of flaky graphite by argon arc plasma torch[J]. High Power Laser and Particle Beams, 2021, 33: 065021 doi: 10.11884/HPLPB202133.210118Cheng Yue, Yu Zhe, Li Jinmao, et al. Study on purification of flaky graphite by argon arc plasma torch[J]. High Power Laser and Particle Beams, 2021, 33: 065021 doi: 10.11884/HPLPB202133.210118