留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强流脉冲电弧作用下石墨电极蒸发特性

戴宏宇 郭景润 俞斌 沈昊 李黎

戴宏宇, 郭景润, 俞斌, 等. 强流脉冲电弧作用下石墨电极蒸发特性[J]. 强激光与粒子束, 2022, 34: 075003. doi: 10.11884/HPLPB202234.220002
引用本文: 戴宏宇, 郭景润, 俞斌, 等. 强流脉冲电弧作用下石墨电极蒸发特性[J]. 强激光与粒子束, 2022, 34: 075003. doi: 10.11884/HPLPB202234.220002
Dai Hongyu, Guo Jingrun, Yu Bin, et al. Effect of high-current pulsed arc on the evaporation characteristics of graphite electrode[J]. High Power Laser and Particle Beams, 2022, 34: 075003. doi: 10.11884/HPLPB202234.220002
Citation: Dai Hongyu, Guo Jingrun, Yu Bin, et al. Effect of high-current pulsed arc on the evaporation characteristics of graphite electrode[J]. High Power Laser and Particle Beams, 2022, 34: 075003. doi: 10.11884/HPLPB202234.220002

强流脉冲电弧作用下石墨电极蒸发特性

doi: 10.11884/HPLPB202234.220002
基金项目: 国家自然科学基金项目(51777082,52077091)
详细信息
    作者简介:

    戴宏宇,daihongyu66@hust.edu.cn

    通讯作者:

    李 黎,leeli@hust.edu.cn

  • 中图分类号: TM833

Effect of high-current pulsed arc on the evaporation characteristics of graphite electrode

  • 摘要: 气体开关电弧的热侵蚀作用是电极损耗的主要成因。石墨电极在电弧作用下发生蒸发并在多次放电后有明显的质量损耗,改变了开关内的气体环境和电极间距,导致开关动作可靠性降低。为研究石墨电极在脉冲电弧冲击下的侵蚀特征,基于开关电弧瞬态扩散特征和石墨材料参数,在弧根区域建立了电弧-电极能量耦合模型,得到了等离子体-固体区域的传热特性。考虑石墨电极的相变特征,计算瞬态热作用下石墨电极的加热范围以及临界相变点,研究瞬态电弧热冲击作用下的石墨电极相变机制。研究结果表明,电弧-电极界面热流主要集中在电弧接触面中心,电弧沉积的能量密度最高可达109 W/m2,石墨在电流上升初期基本处于加热状态,在能量积聚作用下,石墨转变为升华状态,传热强度随半径急剧衰减,蒸发区域略小于电弧半径。通过实验记录了5种开关工况下石墨电极烧蚀形貌和质量损失情况,结果表明,电极质量损失与电弧沉积在电极表面的能量线性相关,近似为0.015 mg/J。研究了电弧关键参数对电极质量损失速率的影响,为延缓电极损耗提供数据支撑。
  • 图  1  气体开关中石墨电极位置示意图

    Figure  1.  Schematic diagram of graphite electrode position in spark gap switch

    图  2  磁流体动力学模型计算区域

    Figure  2.  Computational region of MHD model

    图  3  5种典型的开关脉冲放电电流波形

    Figure  3.  Five typical switching pulse discharge current waveforms

    图  4  模型计算结果

    Figure  4.  Model calculation results

    图  5  阴极和阳极表面热流计算

    Figure  5.  Calculation of heat flux on cathode and anode surface

    图  6  阴极和阳极的表面能量分布

    Figure  6.  Heat energy distribution of cathode and anode

    图  7  阳极温度的计算结果

    Figure  7.  Calculation results of anode temperature

    图  8  石墨电极表面烧蚀宏观与微观照片

    Figure  8.  Macro and micro photos of graphite electrode surface ablation

    图  9  不同放电时刻阳极表面石墨蒸气浓度

    Figure  9.  Mass fraction of graphite vapor on anode surface with time

    图  10  石墨电极蒸发质量随时间的变化

    Figure  10.  Variation of evaporation quality of graphite with time

    图  11  阴极和阳极质量随放电次数的变化

    Figure  11.  Variation of cathode and anode mass with discharge times

    表  1  计算模型边界条件的设置

    Table  1.   Setting of boundary conditions of MHD model

    boundarytypetemperature/Kelectric potentialmagnetic potential
    AB, EFwall1000${{\partial \varphi } \mathord{\left/ {\vphantom {{\partial \varphi } {\partial n}}} \right. } {\partial n}} = 0$${{\partial A} \mathord{\left/ {\vphantom {{\partial A} {\partial n}}} \right. } {\partial n}} = 0$
    BC, DE, FG, HAwall1000${{\partial \varphi } \mathord{\left/ {\vphantom {{\partial \varphi } {\partial n}}} \right. } {\partial n}} = 0$${{\partial A} \mathord{\left/ {\vphantom {{\partial A} {\partial n}}} \right. } {\partial n}} = 0$
    CDwall (cathode)1000$j = - \sigma {{\partial \varphi } \mathord{\left/ {\vphantom {{\partial \varphi } {\partial n}}} \right. } {\partial n}}$${{\partial A} \mathord{\left/ {\vphantom {{\partial A} {\partial n}}} \right. } {\partial n}} = 0$
    GHwall (anode)1000$\varphi = 0$${{\partial A} \mathord{\left/ {\vphantom {{\partial A} {\partial n}}} \right. } {\partial n}} = 0$
    下载: 导出CSV
  • [1] 何伟, 李黎, 郑万国, 等. 2.0 MJ脉冲功率源的500 kA气体开关系统[J]. 强激光与粒子束, 2013, 25(5):1293-1297. (He Wei, Li Li, Zheng Wanguo, et al. 500 kA switch-trigger system for 2.0 MJ capacitive pulsed power supply[J]. High Power Laser and Particle Beams, 2013, 25(5): 1293-1297 doi: 10.3788/HPLPB20132505.1293

    He Wei, Li Li, Zheng Wanguo, et al. 500 kA switch-trigger system for 2.0 MJ capacitive pulsed power supply[J]. High Power Laser and Particle Beams, 2013, 25(5): 1293-1297 doi: 10.3788/HPLPB20132505.1293
    [2] Donaldson A L, Hagler M O, Kristiansen M, et al. Electrode erosion phenomena in a high-energy pulsed discharge[J]. IEEE Transactions on Plasma Science, 1984, 12(1): 28-38. doi: 10.1109/TPS.1984.4316289
    [3] 罗城, 丛培天, 张天洋, 等. 气体火花开关电极烧蚀研究综述[J]. 强激光与粒子束, 2020, 32:105001. (Luo Cheng, Cong Peitian, Zhang Tianyang, et al. Review of the research on electrode erosion of gas spark switch[J]. High Power Laser and Particle Beams, 2020, 32: 105001 doi: doi:10.11884/HPLPB202032.200114

    Luo Cheng, Cong Peitian, Zhang Tianyang, et al. Review of the research on electrode erosion of gas spark switch[J]. High Power Laser and Particle Beams, 2020, 32: 105001 doi: doi:10.11884/HPLPB202032.200114
    [4] 刘轩东, 沈曦, 李晓昂, 等. 脉冲作用下气体火花开关电极熔蚀研究[J]. 高电压技术, 2017, 43(9):3070-3077. (Liu Xuandong, Shen Xi, Li Xiao’ang, et al. Researches on electrode erosion of gas spark switch under pulsed current[J]. High Voltage Engineering, 2017, 43(9): 3070-3077

    Liu Xuandong, Shen Xi, Li Xiao’ang, et al. Researches on electrode erosion of gas spark switch under pulsed current[J]. High Voltage Engineering, 2017, 43(9): 3070-3077
    [5] 饭田修一, 大野和郞, 神前熙, 等. 物理学常用数表[M]. 北京: 科学出版社, 1979

    Ida S, Ono K, Kozaki H. Data on physics in common use[M]. Beijing: Science Press, 1979
    [6] Donaldson A, Kristiansen M, Watson A, et al. Electrode erosion in high current, high energy transient arcs[J]. IEEE Transactions on Magnetics, 1986, 22(6): 1441-1447. doi: 10.1109/TMAG.1986.1064638
    [7] Li Xiao’ang, Liu Xuandong, Zeng Fanhui, et al. Ejection of electrode molten droplet and its effect on the degradation of insulator in gas spark switches[J]. IEEE Transactions on Plasma Science, 2015, 43(4): 1049-1053. doi: 10.1109/TPS.2015.2408607
    [8] Xiang Junting, Tanaka K, Chen F F, et al. Modelling and measurements of gas tungsten arc welding in argon–helium mixtures with metal vapour[J]. Welding in the World, 2021, 65(4): 767-783. doi: 10.1007/s40194-020-01053-4
    [9] Nielsen T, Kaddani A, Zahrai S. Modelling evaporating metal droplets in ablation controlled electric arcs[J]. Journal of Physics D: Applied Physics, 2001, 34(13): 2022-2031. doi: 10.1088/0022-3727/34/13/313
    [10] Murphy A B. The effects of metal vapour in arc welding[J]. Journal of Physics D: Applied Physics, 2010, 43: 434001. doi: 10.1088/0022-3727/43/43/434001
    [11] 戴宏宇, 沈昊, 李黎. 石墨电极气体开关中等离子体弧区碳氧反应效率研究[J]. 强激光与粒子束, 2021, 33:065015. (Dai Hongyu, Shen Hao, Li Li. Research on plasma arc oxidation efficiency of spark gap switch with graphite electrodes[J]. High Power Laser and Particle Beams, 2021, 33: 065015 doi: 10.11884/HPLPB202133.210084

    Dai Hongyu, Shen Hao, Li Li. Research on plasma arc oxidation efficiency of spark gap switch with graphite electrodes[J]. High Power Laser and Particle Beams, 2021, 33: 065015 doi: 10.11884/HPLPB202133.210084
    [12] McKelliget J, Szekely J. Heat transfer and fluid flow in the welding arc[J]. Metallurgical Transactions A, 1986, 17(7): 1139-1148. doi: 10.1007/BF02665312
    [13] Lowke J J. A unified theory of arcs and their electrodes[J]. Journal de Physique IV, 1997, 7(C4): C4-283-C4-294.
    [14] Zhu Peiyuan, Lowke J J, Morrow R. A unified theory of free burning arcs, cathode sheaths and cathodes[J]. Journal of Physics D: Applied Physics, 1992, 25(8): 1221-1230. doi: 10.1088/0022-3727/25/8/011
    [15] Barrett J, Clement C. Kinetic evaporation and condensation rates and their coefficients[J]. Journal of Colloid and Interface Science, 1992, 150(2): 352-364. doi: 10.1016/0021-9797(92)90205-Z
    [16] 程月, 俞哲, 李金懋, 等. 氩气电弧等离子体炬提纯大鳞片石墨研究[J]. 强激光与粒子束, 2021, 33:065021. (Cheng Yue, Yu Zhe, Li Jinmao, et al. Study on purification of flaky graphite by argon arc plasma torch[J]. High Power Laser and Particle Beams, 2021, 33: 065021 doi: 10.11884/HPLPB202133.210118

    Cheng Yue, Yu Zhe, Li Jinmao, et al. Study on purification of flaky graphite by argon arc plasma torch[J]. High Power Laser and Particle Beams, 2021, 33: 065021 doi: 10.11884/HPLPB202133.210118
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  676
  • HTML全文浏览量:  246
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-04
  • 修回日期:  2022-03-29
  • 网络出版日期:  2022-04-16
  • 刊出日期:  2022-05-12

目录

    /

    返回文章
    返回