Influence of insulation system on surface flashover voltage in Blumlein main switch
-
摘要: Blumlein主放电开关作为关键部件被大量地应用于强流电子直线感应加速器等大型脉冲功率装置中,其中绝缘子在主开关中起隔离水或油与气体的作用。设备在高电压脉冲下长时间或高频次作用时,绝缘子气体侧会出现沿面闪络现象,严重影响直线感应加速器的可靠运行。对Blumlein主放电开关中的绝缘结构进行了电场仿真计算,通过对绝缘子的几何结构和电极形状的优化设计,有效调控了绝缘子表面和电极表面的电场分布,试制了不同构型的绝缘子,开展了在标准雷电波脉冲条件下的沿面闪络研究。研究结果表明,优化后的绝缘子的最低和最高沿面闪络电压相比原始结构分别提升了约35.9%和37.2%。
-
关键词:
- Blumlein主放电开关 /
- 沿面闪络 /
- 绝缘子 /
- 电场分布 /
- 绝缘结构优化
Abstract: As a key component, the Blumlein switch is widely used in large pulsed power devices such as high-current electron linear induction accelerators. The insulator in the main switch plays the role of isolating water or oil and gas. When the equipment is subjected to high voltage pulse for a long time or high frequency, the gas side of the insulator will flashover along the surface. The occurrence of surface flashover seriously affects the reliable operation of linear induction accelerator. In view of this, electric field simulation calculation is carried out on the insulation structure of the Blumlein main switch, and the electric field distribution on the surface of the insulator and the electrode is effectively regulated by optimizing the geometric structure of the insulator and the shape of the electrode. At the same time, different insulators with different configurations were trial-produced, and flashover along surface was studied under standard lightning wave pulse conditions. The results show that, the minimum and maximum surface flashover voltages of the optimized insulator are about 35.9% and 37.2% higher than that of the original insulator respectively. -
表 1 不同构形绝缘子表面电场强度的典型数值
Table 1. Electric field strength along insulator surface
insulator Emax/(kV·mm−1) EATJ/(kV·mm−1) ECTJ/(kV·mm−1) origin insulator 10.8 9.44 3.12 single umbrella insulator 11.5 11.5 2.88 optimized insulator 5.28 1.42 0.92 -
[1] 丁伯南, 邓建军, 王华岑, 等. “神龙一号”直线感应电子加速器[J]. 高能物理与核物理, 2005, 29(6):604-610. (Ding Bonan, Deng Jianjun, Wang Huacen, et al. Dragon- Ⅰ linear induction electron accelerator[J]. High Energy Physics and Nuclear Physics, 2005, 29(6): 604-610 doi: 10.3321/j.issn:0254-3052.2005.06.015Ding Bonan, Deng Jianjun, Wang Huacen, et al. Dragon-Ⅰ linear induction electron accelerator[J]. High Energy Physics and Nuclear Physics, 2005, 29(6): 604-610 doi: 10.3321/j.issn:0254-3052.2005.06.015 [2] 邓建军. 直线感应电子加速器[M]. 北京: 国防工业出版社, 2006: 145-193Deng Jianjun. Linear induction electron accelerator[M]. Beijing: National Defense Industry Press, 2006: 145-193 [3] 石金水, 邓建军, 章林文, 等. 神龙二号加速器及其关键技术[J]. 强激光与粒子束, 2016, 28:010201. (Shi Jinshui, Deng Jianjun, Zhang Linwen, et al. Dragon- Ⅱ accelerator and its key technology[J]. High Power Laser and Particle Beams, 2016, 28: 010201 doi: 10.11884/HPLPB201628.010201Shi Jinshui, Deng Jianjun, Zhang Linwen, et al. Dragon-Ⅱ accelerator and its key technology[J]. High Power Laser and Particle Beams, 2016, 28: 010201 doi: 10.11884/HPLPB201628.010201 [4] 罗城, 丛培天, 张天洋, 等. 气体火花开关电极烧蚀研究综述[J]. 强激光与粒子束, 2020, 32:105001. (Luo Cheng, Cong Peitian, Zhang Tianyang, et al. Review of the research on electrode erosion of gas spark switch[J]. High Power Laser and Particle Beams, 2020, 32: 105001Luo Cheng, Cong Peitian, Zhang Tianyang, et al. Review of the research on electrode erosion of gas spark switch[J]. High Power Laser and Particle Beams, 2020, 32: 105001 [5] Hutsel B T, Kovaleski S D, Sullivan D L, et al. Effects of laser triggering parameters on runtime and jitter of a gas switch[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16(4): 999-1005. doi: 10.1109/TDEI.2009.5211846 [6] 李晓昂, 刘轩东, 曾凡辉, 等. 电极熔蚀导致的气体开关绝缘子性能劣化[J]. 强激光与粒子束, 2014, 26:085004. (Li Xiaoang, Liu Xuandong, Zeng Fanhui, et al. Degradation of gas switch insulator due to electrode erosion[J]. High Power Laser and Particle Beams, 2014, 26: 085004 doi: 10.11884/HPLPB201426.085004Li Xiaoang, Liu Xuandong, Zeng Fanhui, et al. Degradation of gas switch insulator due to electrode erosion[J]. High Power Laser and Particle Beams, 2014, 26: 085004 doi: 10.11884/HPLPB201426.085004 [7] 党腾飞, 尹佳辉, 孙凤举, 等. 电极结构对触发管型开关击穿特性的影响[J]. 强激光与粒子束, 2015, 27:065004. (Dang Tengfei, Yin Jiahui, Sun Fengju, et al. Influence of electrode structure on breakdown characteristics of trigatron switch[J]. High Power Laser and Particle Beams, 2015, 27: 065004 doi: 10.11884/HPLPB201527.065004Dang Tengfei, Yin Jiahui, Sun Fengju, et al. Influence of electrode structure on breakdown characteristics of trigatron switch[J]. High Power Laser and Particle Beams, 2015, 27: 065004 doi: 10.11884/HPLPB201527.065004 [8] 卢彦雷, 樊亚军, 石磊, 等. 高电压纳秒气体开关绝缘恢复特性的实验研究[J]. 高电压技术, 2015, 41(6):1852-1856. (Lu Yanlei, Fan Yajun, Shi Lei, et al. Experiment research of high voltage nanosecond gas switch’s insulation recovery[J]. High Voltage Engineering, 2015, 41(6): 1852-1856Lu Yanlei, Fan Yajun, Shi Lei, et al. Experiment research of high voltage nanosecond gas switch’s insulation recovery[J]. High Voltage Engineering, 2015, 41(6): 1852-1856 [9] Ma Jingtan, Tao Fengbo, Ma Yong, et al. Quantitative analysis on the influence of surface charges on flashover of insulators in SF6[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28(1): 274-281. doi: 10.1109/TDEI.2020.008979 [10] Sun Chuyu, Zhou Hui, Chen Weiqing, et al. Characteristics of nanosecond pulse dielectric surface flashover in high pressure SF6[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25(4): 1387-1392. doi: 10.1109/TDEI.2018.006759 [11] Liu Lin, Li Xiaoang, Wen Tao, et al. Investigation on surface electric field distribution features related to insulator flashover in SF6 gas[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(5): 1588-1595. doi: 10.1109/TDEI.2019.008194 [12] Krile J T, Vela R, Neuber A A, et al. Pulsed dielectric-surface flashover in an SF6 environment[J]. IEEE Transactions on Plasma Science, 2007, 35(5): 1580-1587. doi: 10.1109/TPS.2007.904958 [13] 武庆周, 李劲, 李远, 等. “神龙二号”气体火花开关中绝缘结构的电场分析与优化[J]. 强激光与粒子束, 2018, 30:025001. (Wu Qingzhou, Li Jin, Li Yuan, et al. Electric field analysis and optimization of the insulation system in gas-filled spark gap switch of Dragon-Ⅱ accelerator[J]. High Power Laser and Particle Beams, 2018, 30: 025001 doi: 10.11884/HPLPB201830.170370Wu Qingzhou, Li Jin, Li Yuan, et al. Electric field analysis and optimization of the insulation system in gas-filled spark gap switch of Dragon-Ⅱ accelerator[J]. High Power Laser and Particle Beams, 2018, 30: 025001 doi: 10.11884/HPLPB201830.170370 [14] 吴泽华, 田汇冬, 王浩然, 等. 特高压GIL哑铃型三支柱绝缘子优化设计方法[J]. 电网技术, 2020, 44(7):2754-2761. (Wu Zehua, Tian Huidong, Wang Haoran, et al. Optimization design method for UHVAC GIL dumbbell type tri-post insulators[J]. Power System Technology, 2020, 44(7): 2754-2761Wu Zehua, Tian Huidong, Wang Haoran, et al. Optimization design method for UHVAC GIL dumbbell type tri-post insulators[J]. Power System Technology, 2020, 44(7): 2754-2761 [15] 李乃一, 彭宗仁, 刘鹏. 1100 kV直流SF6气体绝缘穿墙套管电场仿真分析[J]. 高电压技术, 2020, 46(1):205-214. (Li Naiyi, Peng Zongren, Liu Peng. Electric field simulation and analysis of 1100 kV DC SF6 gas-insulated wall bushing[J]. High Voltage Engineering, 2020, 46(1): 205-214Li Naiyi, Peng Zongren, Liu Peng. Electric field simulation and analysis of 1100 kV DC SF6 gas-insulated wall bushing[J]. High Voltage Engineering, 2020, 46(1): 205-214