留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电爆炸法制备纳米颗粒收集方法

李琛 韩若愚 耿金越 袁伟 曹雨晨 欧阳吉庭

李琛, 韩若愚, 耿金越, 等. 电爆炸法制备纳米颗粒收集方法[J]. 强激光与粒子束, 2022, 34: 075014. doi: 10.11884/HPLPB202234.220007
引用本文: 李琛, 韩若愚, 耿金越, 等. 电爆炸法制备纳米颗粒收集方法[J]. 强激光与粒子束, 2022, 34: 075014. doi: 10.11884/HPLPB202234.220007
Li Chen, Han Ruoyu, Geng Jinyue, et al. Collection method for nanoparticles prepared by electric explosion[J]. High Power Laser and Particle Beams, 2022, 34: 075014. doi: 10.11884/HPLPB202234.220007
Citation: Li Chen, Han Ruoyu, Geng Jinyue, et al. Collection method for nanoparticles prepared by electric explosion[J]. High Power Laser and Particle Beams, 2022, 34: 075014. doi: 10.11884/HPLPB202234.220007

电爆炸法制备纳米颗粒收集方法

doi: 10.11884/HPLPB202234.220007
基金项目: 国家自然科学基金项目(51907007);北京市自然科学基金项目(3212034);北京控制工程研究所先进空间推进技术实验室和北京市高效能及绿色宇航推进工程技术研究中心开放基金项目(LabASP2020-09)
详细信息
    作者简介:

    李 琛,498437715@qq.com

    通讯作者:

    韩若愚,han.ruoyu@hotmail.com

  • 中图分类号: TM89

Collection method for nanoparticles prepared by electric explosion

  • 摘要: 金属丝电爆炸法制备纳米材料因其负载可大程度的过热和爆炸产物非平衡扩散过程得到了研究人员的广泛关注,认为是制备新型功能材料的有效方法。研究了不同收集方法对电爆炸法制备钛纳米颗粒的影响,并结合电学、光学、自辐射图像和形貌分析等诊断手段分析了不同方法下产物特性的成因。结果表明,钛丝电爆炸呈现周期型放电模式,产物通道在放电结束前(约40 μs)可膨胀至约1.7 cm处,此后有尖状突刺发展(波阵面后湍流区),其速度约为55 m/s。为研究爆炸产物不同状态下纳米颗粒形成特性,使用了3种不同的产物收集方法,分别为:①在金属丝径向1.5 cm处放置硅片收集;②在腔体出口处预置滤网收集;③在金属丝一侧电极上通过定向喷涂收集。产物形貌表征结果表明,使用不同收集方法时产物特征存在明显差别,前2种方法爆炸产物先与介质混合再沉积于硅片,得到的产物分别为分散、链状的球状纳米颗粒和密集、堆叠的纳米颗粒团簇;后一种方法电爆炸产物具有较高的密度和定向速度(对硅片),硅片以金属丝为轴心远近呈现出粉末状和烧结块状两种不同形式。
  • 图  1  电爆炸实验平台原理图

    Figure  1.  Schematics of the electrical explosion experimental platform

    图  2  3种不同收集方法示意图

    Figure  2.  Schematics of three different collection methods

    图  3  金属钛丝电爆炸

    Figure  3.  Electrical explosion of titanium wire

    图  4  电爆炸产物形貌表征和粒径统计

    Figure  4.  Morphology characterization of electrical exploded products and statistics of particle sizes

    图  5  收集方式3的钛丝电爆炸

    Figure  5.  Electrical explosion of titanium wire under collection method 3

  • [1] Chace W G. Exploding wires[J]. Physics Today, 1964, 17(8): 19-24. doi: 10.1063/1.3051737
    [2] 张永民, 姚伟博, 邱爱慈, 等. 金属丝电爆炸现象研究综述[J]. 高电压技术, 2019, 45(8):2668-2680. (Zhang Yongmin, Yao Weibo, Qiu Aici, et al. A review of wire electrical explosion phenomena[J]. High Voltage Engineering, 2019, 45(8): 2668-2680

    Zhang Yongmin, Yao Weibo, Qiu Aici, et al. A review of wire electrical explosion phenomena[J]. High Voltage Engineering, 2019, 45(8): 2668-2680
    [3] Kotov Y A. Electric explosion of wires as a method for preparation of nanopowders[J]. Journal of Nanoparticle Research, 2003, 5(5): 539-550.
    [4] Cho C H, Park S H, Choi Y W, et al. Production of nanopowders by wire explosion in liquid media[J]. Surface and Coatings Technology, 2007, 201(9/11): 4847-4849.
    [5] 周晟阳, 冯国英, 李玮, 等. 电爆炸法制备Fe3O4纳米颗粒及其物相研究[J]. 强激光与粒子束, 2016, 28:084101. (Zhou Shengyang, Feng Guoying, Li Wei, et al. Phase analysis of Fe3O4 nanoparticles produced by electrical explosion of iron wire[J]. High Power Laser and Particle Beams, 2016, 28: 084101 doi: 10.11884/HPLPB201628.160013

    Zhou Shengyang, Feng Guoying, Li Wei, et al. Phase analysis of Fe3O4 nanoparticles produced by electrical explosion of iron wire[J]. High Power Laser and Particle Beams, 2016, 28: 084101 doi: 10.11884/HPLPB201628.160013
    [6] 刘凤馨, 冯国英, 杨超, 等. 电爆炸丝法制备纳米ZrO2粉末的实验研究[J]. 强激光与粒子束, 2018, 30:074103. (Liu Fengxin, Feng Guoying, Yang Chao, et al. Experimental analysis of ZrO2 nanopowders by electrical explosion of zirconium wire[J]. High Power Laser and Particle Beams, 2018, 30: 074103 doi: 10.11884/HPLPB201830.180055

    Liu Fengxin, Feng Guoying, Yang Chao, et al. Experimental analysis of ZrO2 nanopowders by electrical explosion of zirconium wire[J]. High Power Laser and Particle Beams, 2018, 30: 074103 doi: 10.11884/HPLPB201830.180055
    [7] Tokoi Y, Suzuki T, Nakayama T, et al. Synthesis of TiO2 nanosized powder by pulsed wire discharge[J]. Japanese Journal of Applied Physics, 2008, 47(1S): 760-763.
    [8] Bien T N, Gu W H, Bac L H, et al. Preparation and characterization of copper-graphite composites by electrical explosion of wire in Liquid[J]. Journal of Nanoscience and Nanotechnology, 2014, 14(11): 8750-8755. doi: 10.1166/jnn.2014.9995
    [9] Wang Xudong, Wei Yupeng, Zhou Hui, et al. Synthesis of graphene nanosheets by the electrical explosion of graphite powder confined in a tube[J]. Ceramics International, 2021, 47(15): 21934-21942. doi: 10.1016/j.ceramint.2021.04.211
    [10] 伍友成, 邓建军, 郝世荣, 等. 电爆炸丝方法产生纳米二氧化钛粉末[J]. 高电压技术, 2006, 32(6):70-71,104. (Wu Youcheng, Deng Jianjun, Hao Shirong, et al. Production of Nanosize TiO2 powders by electrical exploding wires[J]. High Voltage Engineering, 2006, 32(6): 70-71,104 doi: 10.3969/j.issn.1003-6520.2006.06.021

    Wu Youcheng, Deng Jianjun, Hao Shirong, et al. Production of Nanosize TiO2 powders by electrical exploding wires[J]. High Voltage Engineering, 2006, 32(6): 70-71, 104 doi: 10.3969/j.issn.1003-6520.2006.06.021
    [11] 毛志国. 电爆炸金属丝制备纳米粉体的研究[D]. 北京: 清华大学, 2009: 13-15

    Mao Zhiguo. Nano-powder production by electrical explosion of metallic wires[D]. Beijing: Tsinghua University, 2009: 13-15
    [12] Mao Zhiguo, Zou Xiaobing, Wang Xinxin, et al. Circuit simulation of the behavior of exploding wires for nano-powder production[J]. Laser and Particle Beams, 2009, 27(1): 49-55. doi: 10.1017/S026303460900007X
    [13] Bai Jun, Shi Zongqian, Wu Ziqiang, et al. Effect of ambient pressure and wire parameters on nanoparticle characteristics during microsecond explosion of aluminum wire[J]. Tech Connect Briefs, 2017, 1: 106-109.
    [14] Han Ruoyu, Wu Jiawei, Qiu Aici, et al. A platform for exploding wires in different media[J]. Review of Scientific Instruments, 2017, 88: 103504.
    [15] 刘晓雯, 冯建锐, 周强, 等. 纳米W粉冲击烧结的分子动力学模拟[J]. 爆炸与冲击, 2020, 40:024202. (Liu Xiaowen, Feng Jianrui, Zhou Qiang, et al. Molecular dynamics simulation of shock consolidation of nano tungsten powder[J]. Explosion and Shock Wave, 2020, 40: 024202 doi: 10.11883/bzycj-2019-0057

    Liu Xiaowen, Feng Jianrui, Zhou Qiang, et al. Molecular dynamics simulation of shock consolidation of nano tungsten powder[J]. Explosion and Shock Wave, 2020, 40: 024202 doi: 10.11883/bzycj-2019-0057
    [16] 王占磊. 爆炸粉末烧结法制取WC/Cu复合材料[D]. 大连: 大连理工大学, 2005: 13-16

    Wang Zhanlei. Study on explosive powder compaction of WC/Cu composites[D]. Dalian: Dalian University of Technology, 2005: 13-16
  • 加载中
图(5)
计量
  • 文章访问数:  851
  • HTML全文浏览量:  506
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-05
  • 修回日期:  2022-02-09
  • 网络出版日期:  2022-07-04
  • 刊出日期:  2022-05-12

目录

    /

    返回文章
    返回