留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种调节Marx电源脉冲边沿的驱动电路

张睿 饶俊峰 李孜 姜松 王永刚

张睿, 饶俊峰, 李孜, 等. 一种调节Marx电源脉冲边沿的驱动电路[J]. 强激光与粒子束, 2022, 34: 095011. doi: 10.11884/HPLPB202234.220011
引用本文: 张睿, 饶俊峰, 李孜, 等. 一种调节Marx电源脉冲边沿的驱动电路[J]. 强激光与粒子束, 2022, 34: 095011. doi: 10.11884/HPLPB202234.220011
Zhang Rui, Rao Junfeng, Li Zi, et al. A driver circuit to adjust the pulse edges of Marx generators[J]. High Power Laser and Particle Beams, 2022, 34: 095011. doi: 10.11884/HPLPB202234.220011
Citation: Zhang Rui, Rao Junfeng, Li Zi, et al. A driver circuit to adjust the pulse edges of Marx generators[J]. High Power Laser and Particle Beams, 2022, 34: 095011. doi: 10.11884/HPLPB202234.220011

一种调节Marx电源脉冲边沿的驱动电路

doi: 10.11884/HPLPB202234.220011
基金项目: 国家重点研发计划数字诊疗专项(2019YFC0119102);上海市青年科技英才扬帆计划项目(19YF1435000)
详细信息
    作者简介:

    张 睿,zrusst@163.com

    通讯作者:

    饶俊峰,jfrao@usst.edu.cn

  • 中图分类号: TM78

A driver circuit to adjust the pulse edges of Marx generators

  • 摘要: 为了调节固态Marx发生器输出脉冲的边沿,提出了一种新型的的驱动电路,该方案通过调整充放电管的驱动电压,结合驱动电路的硬件结构,调节米勒平台时间,进而调整充放电管开通速度,实现了对于高压输出脉冲的边沿调节,其结构简单,不需要每级独立的控制信号。对于该电路中驱动电压和开关管开通速度的关系建立了模型进行了推导。结合理论分析结果设计了驱动电路的参数,仿真结果表明该驱动电路能够调节输出脉冲边沿。搭建带有设计参数下驱动电路的固态Marx发生器在容性负载下和阻性负载下进行了实验验证。利用该方案实现了对于6级Marx电路的3.6 kV输出脉冲在55~7.7 µs的边沿调节,验证了该方案的可行性,并对比分析了不同阻性负载对于脉冲边沿造成的影响。实验结果表明:该电路在提高固态脉冲电源的边沿调节性能方面有独特的优势。
  • 图  1  Marx 发生器的边沿形成过程

    Figure  1.  Formation of rise-fall edges in solid-state Marx generator

    图  2  所提出的脉冲边沿调节驱动电路

    Figure  2.  Proposed driver circuit to adjust pulse edge

    图  3  驱动电路不同工作模式与相应电压波形图

    Figure  3.  Working modes of driving circuit and corresponding voltage waveforms

    图  4  驱动电路中只有(a)一个MOSFET 和(b)两个MOSFET时,不同驱动电压下门级MOSFET的工作状态图。

    Figure  4.  Working states of gate MOSFETs at different driver voltage with (a) only one MOSFET and (b) two MOSFETs in the driver circuit

    图  5  米勒平台期间功率MOSFET的等效电路

    Figure  5.  Equivalent circuit of the power MOSFET during the Miller plateau time

    图  6  采用单个MOSFET的驱动电路调节上升沿仿真结果

    Figure  6.  Rising edge adjustment simulation result using single MOSFET driver circuit

    图  7  只增加Cgd和采用两个MOSFET的驱动电路调节上升沿仿真结果

    Figure  7.  Rising edge adjustment simulation result only adding Cgd and using double MOSFET driver circuit

    图  8  使用边沿调节驱动电路的 Marx 发生器实物图

    Figure  8.  Photo of a Marx generator with the proposed driver circuit

    图  9  单个MOSFET驱动电路第一级放电管UgsUds波形

    Figure  9.  Ugs, Uds waveform of first discharge switch using single MOSFET driver circuit

    图  10  单个MOSFET驱动电路调节边沿波形

    Figure  10.  Rise-fall time adjustment waveform using single MOSFET driver circuit

    图  11  两个MOSFET的驱动电路调节上升沿波形

    Figure  11.  Rise time adjustment waveform using double MOSFET driver circuit

    图  12  阻性负载下脉冲边沿调节结果

    Figure  12.  Pulse edge adjustment experimental results under resistive load

    图  13  重频放电波形

    Figure  13.  Repetitive frequency discharge waveform

    表  1  单个MOSFET驱动电路参数

    Table  1.   Experimental circuit parameters

    gate MOSFETUz1/VR1R2Cgd/pFRc
    AO340713561015010
    下载: 导出CSV
  • [1] Ryan H A, Hirakawa S, Yang Enbo, et al. High-voltage, multiphasic, nanosecond pulses to modulate cellular responses[J]. IEEE Transactions on Biomedical Circuits and Systems, 2018, 12(2): 338-350. doi: 10.1109/TBCAS.2017.2786586
    [2] 杨宇帆, 陈倩, 王浩, 等. 高压电场技术在食品加工中的应用研究进展[J]. 食品工业科技, 2019, 40(19):316-320,325. (Yang Yufan, Chen Qian, Wang Hao, et al. Research progress of high voltage electric field technology in food processing[J]. Science and Technology of Food Industry, 2019, 40(19): 316-320,325

    Yang Yufan, Chen Qian, Wang Hao, et al. Research progress of high voltage electric field technology in food processing[J]. Science and Technology of Food Industry, 2019, 40(19): 316-320, 325
    [3] 彭烨, 刘涛, 龚海峰, 等. 基于EHD理论的油包水液滴在脉冲电场作用下的振动变形研究[J]. 石油学报(石油加工), 2017, 33(6):1146-1151. (Peng Ye, Liu Tao, Gong Haifeng, et al. Research on vibrating deformation of water droplets in oil subjected to pulsed electric field by electro-hydrodynamic (EHD) theory[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2017, 33(6): 1146-1151

    Peng Ye, Liu Tao, Gong Haifeng, et al. Research on vibrating deformation of water droplets in oil subjected to pulsed electric field by electro-hydrodynamic (EHD) theory[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2017, 33(6): 1146-1151
    [4] Redondo L M, Zahyka M, Kandratsyeu A. Solid-state generation of high-frequency burst of bipolar pulses for medical applications[J]. IEEE Transactions on Plasma Science, 2019, 47(8): 4091-4095. doi: 10.1109/TPS.2019.2923570
    [5] Jain V, Srinivasan R, Agarwal V. An accurate electrical model for atmospheric pressure DBD plasma in air with experimental validation[C]//Proceedings of the 2016 7th India International Conference on Power Electronics (IICPE). 2016: 1-4.
    [6] Jakob H, Kim M. Electrical model for complex surface DBD plasma sources[J]. IEEE Transactions on Plasma Science, 2021, 49(10): 3051-3058. doi: 10.1109/TPS.2021.3110437
    [7] Zhang Qingeao, Zhao Hu, Lin Hui, et al. A novel electrical model of dielectric barrier discharge for quasi-homogeneous mode and filamentary mode//Proceedings of the 2018 21st International Conference on Electrical Machines and Systems (ICEMS). 2018: 865-870. Mao Xiaohui, Yao Lieying, Wang Yingqiao, et al. A pulse step modulator high-voltage power supply for auxiliary heating system on the HL-2A tokamak[J]. IEEE Transactions on Plasma Science, 2014, 42(5): 1425-1429. doi: 10.1109/TPS.2013.2289366
    [8] Bera A, Singh N K, Kumar N, et al. Development of 42-GHz, 200-kW gyrotron for Indian tokamak system tested in the regime of short pulselength[J]. IEEE Transactions on Plasma Science, 2019, 47(10): 4658-4663. doi: 10.1109/TPS.2019.2938540
    [9] Rao Junfeng, Li Zi, Xia Kun, et al. An all solid-state repetitive high-voltage rectangular pulse generator based on magnetic switch[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(4): 1976-1982. doi: 10.1109/TDEI.2015.004956
    [10] 刘克富. 固态Marx发生器研究进展[J]. 高电压技术, 2015, 41(6):1781-1787. (Liu Kefu. Research progress in solid-state Marx generators[J]. High Voltage Engineering, 2015, 41(6): 1781-1787

    Liu Kefu. Research progress in solid-state Marx generators[J]. High Voltage Engineering, 2015, 41(6): 1781-1787
    [11] 米彦, 卞昌浩, 万佳仑, 等. 基于Blumlein和TLT的模块化全固态纳秒脉冲发生器[J]. 仪器仪表学报, 2017, 38(11):2858-2865. (Mi Yan, Bian Changhao, Wan Jialun, et al. Modular solid-state nanosecond pulse generator based on Blumlein and transmission line transformer[J]. Chinese Journal of Scientific Instrument, 2017, 38(11): 2858-2865 doi: 10.3969/j.issn.0254-3087.2017.11.029

    Mi Yan, Bian Changhao, Wan Jialun, et al. Modular solid-state nanosecond pulse generator based on Blumlein and transmission line transformer[J]. Chinese Journal of Scientific Instrument, 2017, 38(11): 2858-2865 doi: 10.3969/j.issn.0254-3087.2017.11.029
    [12] 饶俊峰, 吴施蓉, 朱益成, 等. 双极性固态直线变压器驱动器的研制[J]. 强激光与粒子束, 2021, 33:065006. (Rao Junfeng, Wu Shirong, Zhu Yicheng, et al. Development of bipolar solid-state linear transformer driver[J]. High Power Laser and Particle Beams, 2021, 33: 065006

    Rao Junfeng, Wu Shirong, Zhu Yicheng, et al. Development of bipolar solid-state linear transformer driver[J]. High Power Laser and Particle Beams, 2021, 33: 065006
    [13] 饶俊峰, 吴改生, 王永刚, 等. 采用单开关谐振电路的脉冲电源设计[J]. 强激光与粒子束, 2020, 32:085001. (Rao Junfeng, Wu Gaisheng, Wang Yonggang, et al. Design of pulsed power supply using single switch resonant circuit[J]. High Power Laser and Particle Beams, 2020, 32: 085001

    Rao Junfeng, Wu Gaisheng, Wang Yonggang, et al. Design of pulsed power supply using single switch resonant circuit[J]. High Power Laser and Particle Beams, 2020, 32: 085001
    [14] Wu Jianxing, Cao Yuanqing, Li Hongtao, et al. The adjustable nanosecond pulse generation based on high-voltage MOSFET[C]//Proceedings of 2011 International Conference on Computational Problem-Solving (ICCP). 2011: 366-369.
    [15] Mi Yan, Wan Hui, Bian Changhao, et al. An MMC-based modular unipolar/bipolar high-voltage nanosecond pulse generator with adjustable rise/fall time[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(2): 515-522. doi: 10.1109/TDEI.2019.007746
    [16] Liu Ying, Fan Rui, Zhang Xiaoning, et al. Bipolar high voltage pulse generator without H-bridge based on cascade of positive and negative Marx generators[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(2): 476-483. doi: 10.1109/TDEI.2018.007861
    [17] Zarghani M, Mohsenzade S, Kaboli S. A high-voltage pulsed power supply with online rise time adjusting capability for vacuum tubes[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(3): 3019-3029. doi: 10.1109/JESTPE.2020.3006013
    [18] Guo Jing, Ge Hao, Ye Jin, et al. Improved method for MOSFET voltage rise-time and fall-time estimation in inverter switching loss calculation[C]//Proceedings of 2015 IEEE Transportation Electrification Conference and Expo (ITEC). 2015: 1-6.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  914
  • HTML全文浏览量:  294
  • PDF下载量:  209
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-06
  • 修回日期:  2022-03-15
  • 录用日期:  2022-03-15
  • 网络出版日期:  2022-03-24
  • 刊出日期:  2022-06-17

目录

    /

    返回文章
    返回