A driver circuit to adjust the pulse edges of Marx generators
-
摘要: 为了调节固态Marx发生器输出脉冲的边沿,提出了一种新型的的驱动电路,该方案通过调整充放电管的驱动电压,结合驱动电路的硬件结构,调节米勒平台时间,进而调整充放电管开通速度,实现了对于高压输出脉冲的边沿调节,其结构简单,不需要每级独立的控制信号。对于该电路中驱动电压和开关管开通速度的关系建立了模型进行了推导。结合理论分析结果设计了驱动电路的参数,仿真结果表明该驱动电路能够调节输出脉冲边沿。搭建带有设计参数下驱动电路的固态Marx发生器在容性负载下和阻性负载下进行了实验验证。利用该方案实现了对于6级Marx电路的3.6 kV输出脉冲在55~7.7 µs的边沿调节,验证了该方案的可行性,并对比分析了不同阻性负载对于脉冲边沿造成的影响。实验结果表明:该电路在提高固态脉冲电源的边沿调节性能方面有独特的优势。Abstract: A novel driving circuit for the adjustment of pulse edges in Marx generators is proposed. By adjusting the driving voltage amplitudes of the charge and discharge switches, the Miller plateau time is controlled in the driving circuit. Then the turn-on speed of the switches and the pulse edges of high-voltage pulses are adjusted. This drive circuit is simple in structure and does not require additional independent signals. A model is established to study the relationship between the driving voltage amplitudes and the turn-on speed of switches. Combined with the theoretical analysis results, the parameters of the driving circuit are designed, and the simulation results show that the driving circuit can adjust the pulse edge. A solid-state Marx generator with the proposed driving circuit was built to experiment under capacitive load and resistive load. Using this method, the edge adjustment of 3.6 kV output pulse from 55 ns to 7.7 μs for 6-stage Marx circuit was achieved, and the influence of different resistive loads on the pulse edge is compared and analyzed. The experiment results show that the driving circuit has unique advantages in improving the edge adjustment performance of pulsed generators.
-
Key words:
- solid-state Marx generators /
- pulse edge adjustment /
- Miller plateau /
- driving circuit
-
表 1 单个MOSFET驱动电路参数
Table 1. Experimental circuit parameters
gate MOSFET Uz1/V R1/Ω R2/Ω Cgd/pF Rc/Ω AO3407 13 56 10 150 10 -
[1] Ryan H A, Hirakawa S, Yang Enbo, et al. High-voltage, multiphasic, nanosecond pulses to modulate cellular responses[J]. IEEE Transactions on Biomedical Circuits and Systems, 2018, 12(2): 338-350. doi: 10.1109/TBCAS.2017.2786586 [2] 杨宇帆, 陈倩, 王浩, 等. 高压电场技术在食品加工中的应用研究进展[J]. 食品工业科技, 2019, 40(19):316-320,325. (Yang Yufan, Chen Qian, Wang Hao, et al. Research progress of high voltage electric field technology in food processing[J]. Science and Technology of Food Industry, 2019, 40(19): 316-320,325Yang Yufan, Chen Qian, Wang Hao, et al. Research progress of high voltage electric field technology in food processing[J]. Science and Technology of Food Industry, 2019, 40(19): 316-320, 325 [3] 彭烨, 刘涛, 龚海峰, 等. 基于EHD理论的油包水液滴在脉冲电场作用下的振动变形研究[J]. 石油学报(石油加工), 2017, 33(6):1146-1151. (Peng Ye, Liu Tao, Gong Haifeng, et al. Research on vibrating deformation of water droplets in oil subjected to pulsed electric field by electro-hydrodynamic (EHD) theory[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2017, 33(6): 1146-1151Peng Ye, Liu Tao, Gong Haifeng, et al. Research on vibrating deformation of water droplets in oil subjected to pulsed electric field by electro-hydrodynamic (EHD) theory[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2017, 33(6): 1146-1151 [4] Redondo L M, Zahyka M, Kandratsyeu A. Solid-state generation of high-frequency burst of bipolar pulses for medical applications[J]. IEEE Transactions on Plasma Science, 2019, 47(8): 4091-4095. doi: 10.1109/TPS.2019.2923570 [5] Jain V, Srinivasan R, Agarwal V. An accurate electrical model for atmospheric pressure DBD plasma in air with experimental validation[C]//Proceedings of the 2016 7th India International Conference on Power Electronics (IICPE). 2016: 1-4. [6] Jakob H, Kim M. Electrical model for complex surface DBD plasma sources[J]. IEEE Transactions on Plasma Science, 2021, 49(10): 3051-3058. doi: 10.1109/TPS.2021.3110437 [7] Zhang Qingeao, Zhao Hu, Lin Hui, et al. A novel electrical model of dielectric barrier discharge for quasi-homogeneous mode and filamentary mode//Proceedings of the 2018 21st International Conference on Electrical Machines and Systems (ICEMS). 2018: 865-870. Mao Xiaohui, Yao Lieying, Wang Yingqiao, et al. A pulse step modulator high-voltage power supply for auxiliary heating system on the HL-2A tokamak[J]. IEEE Transactions on Plasma Science, 2014, 42(5): 1425-1429. doi: 10.1109/TPS.2013.2289366 [8] Bera A, Singh N K, Kumar N, et al. Development of 42-GHz, 200-kW gyrotron for Indian tokamak system tested in the regime of short pulselength[J]. IEEE Transactions on Plasma Science, 2019, 47(10): 4658-4663. doi: 10.1109/TPS.2019.2938540 [9] Rao Junfeng, Li Zi, Xia Kun, et al. An all solid-state repetitive high-voltage rectangular pulse generator based on magnetic switch[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(4): 1976-1982. doi: 10.1109/TDEI.2015.004956 [10] 刘克富. 固态Marx发生器研究进展[J]. 高电压技术, 2015, 41(6):1781-1787. (Liu Kefu. Research progress in solid-state Marx generators[J]. High Voltage Engineering, 2015, 41(6): 1781-1787Liu Kefu. Research progress in solid-state Marx generators[J]. High Voltage Engineering, 2015, 41(6): 1781-1787 [11] 米彦, 卞昌浩, 万佳仑, 等. 基于Blumlein和TLT的模块化全固态纳秒脉冲发生器[J]. 仪器仪表学报, 2017, 38(11):2858-2865. (Mi Yan, Bian Changhao, Wan Jialun, et al. Modular solid-state nanosecond pulse generator based on Blumlein and transmission line transformer[J]. Chinese Journal of Scientific Instrument, 2017, 38(11): 2858-2865 doi: 10.3969/j.issn.0254-3087.2017.11.029Mi Yan, Bian Changhao, Wan Jialun, et al. Modular solid-state nanosecond pulse generator based on Blumlein and transmission line transformer[J]. Chinese Journal of Scientific Instrument, 2017, 38(11): 2858-2865 doi: 10.3969/j.issn.0254-3087.2017.11.029 [12] 饶俊峰, 吴施蓉, 朱益成, 等. 双极性固态直线变压器驱动器的研制[J]. 强激光与粒子束, 2021, 33:065006. (Rao Junfeng, Wu Shirong, Zhu Yicheng, et al. Development of bipolar solid-state linear transformer driver[J]. High Power Laser and Particle Beams, 2021, 33: 065006Rao Junfeng, Wu Shirong, Zhu Yicheng, et al. Development of bipolar solid-state linear transformer driver[J]. High Power Laser and Particle Beams, 2021, 33: 065006 [13] 饶俊峰, 吴改生, 王永刚, 等. 采用单开关谐振电路的脉冲电源设计[J]. 强激光与粒子束, 2020, 32:085001. (Rao Junfeng, Wu Gaisheng, Wang Yonggang, et al. Design of pulsed power supply using single switch resonant circuit[J]. High Power Laser and Particle Beams, 2020, 32: 085001Rao Junfeng, Wu Gaisheng, Wang Yonggang, et al. Design of pulsed power supply using single switch resonant circuit[J]. High Power Laser and Particle Beams, 2020, 32: 085001 [14] Wu Jianxing, Cao Yuanqing, Li Hongtao, et al. The adjustable nanosecond pulse generation based on high-voltage MOSFET[C]//Proceedings of 2011 International Conference on Computational Problem-Solving (ICCP). 2011: 366-369. [15] Mi Yan, Wan Hui, Bian Changhao, et al. An MMC-based modular unipolar/bipolar high-voltage nanosecond pulse generator with adjustable rise/fall time[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(2): 515-522. doi: 10.1109/TDEI.2019.007746 [16] Liu Ying, Fan Rui, Zhang Xiaoning, et al. Bipolar high voltage pulse generator without H-bridge based on cascade of positive and negative Marx generators[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(2): 476-483. doi: 10.1109/TDEI.2018.007861 [17] Zarghani M, Mohsenzade S, Kaboli S. A high-voltage pulsed power supply with online rise time adjusting capability for vacuum tubes[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(3): 3019-3029. doi: 10.1109/JESTPE.2020.3006013 [18] Guo Jing, Ge Hao, Ye Jin, et al. Improved method for MOSFET voltage rise-time and fall-time estimation in inverter switching loss calculation[C]//Proceedings of 2015 IEEE Transportation Electrification Conference and Expo (ITEC). 2015: 1-6.