留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于PWB方法的电大尺寸腔体结构电磁耦合求解器的开发与验证

胡明浪 周世华 闫丽萍 赵翔

胡明浪, 周世华, 闫丽萍, 等. 基于PWB方法的电大尺寸腔体结构电磁耦合求解器的开发与验证[J]. 强激光与粒子束, 2022, 34: 053002. doi: 10.11884/HPLPB202234.220026
引用本文: 胡明浪, 周世华, 闫丽萍, 等. 基于PWB方法的电大尺寸腔体结构电磁耦合求解器的开发与验证[J]. 强激光与粒子束, 2022, 34: 053002. doi: 10.11884/HPLPB202234.220026
Hu Minglang, Zhou Shihua, Yan Liping, et al. Development and validation of electromagnetic coupling solver for electrically large-sized cavity structure based on power balance method[J]. High Power Laser and Particle Beams, 2022, 34: 053002. doi: 10.11884/HPLPB202234.220026
Citation: Hu Minglang, Zhou Shihua, Yan Liping, et al. Development and validation of electromagnetic coupling solver for electrically large-sized cavity structure based on power balance method[J]. High Power Laser and Particle Beams, 2022, 34: 053002. doi: 10.11884/HPLPB202234.220026

基于PWB方法的电大尺寸腔体结构电磁耦合求解器的开发与验证

doi: 10.11884/HPLPB202234.220026
基金项目: 国家自然科学基金面上项目(61877041)
详细信息
    作者简介:

    胡明浪,ml_hu_scu@163.com

    通讯作者:

    赵 翔,zhaoxiang@scu.edu.cn

  • 中图分类号: O441.4

Development and validation of electromagnetic coupling solver for electrically large-sized cavity structure based on power balance method

  • 摘要: 功率平衡(PWB)法是基于统计电磁学的求解电大尺寸腔体结构电磁耦合问题的快速方法。在PWB方法的基础上,开发了一个电大尺寸腔体结构电磁耦合求解器,实现了对不同腔体形状、不同孔缝形状、不同源类型等条件下的电大尺寸腔体结构电磁耦合水平的快速求解,并与已发表文献的结果和实验结果进行了对比,验证了求解器的有效性和高效性。
  • 图  1  文献[17]腔体

    Figure  1.  The cavity presented by Junqua et al [17]

    图  2  求解器流程图

    Figure  2.  Solver flowchart

    图  3  文献[17]算例

    Figure  3.  Example presented by Junqua et al [17]

    图  4  文献[16]算例

    Figure  4.  Example presented by Hill et al [16]

    图  5  文献[22]算例

    Figure  5.  Example presented by Junqua et al [22]

    图  6  长方体双腔算例

    Figure  6.  Example of cuboid double cavity

  • [1] 张子恒, 田杨萌, 王彩霞. 基于XFDTD的箱变开孔金属外壳雷电电磁脉冲防护[J]. 太赫兹科学与电子信息学报, 2020, 18(5):863-869. (Zhang Ziheng, Tian Yangmeng, Wang Caixia. Lightning electromagnetic pulse protection ability of box-type substation with slots based on XFDTD[J]. Journal of Terahertz Science and Electronic Information Technology, 2020, 18(5): 863-869 doi: 10.11805/TKYDA2019220
    [2] Kubík Z, Skála J. Shielding effectiveness measurement and simulation of small perforated shielding enclosure using FEM[C]//2015 IEEE 15th International Conference on Environment and Electrical Engineering. 2015: 1983-1988.
    [3] Ali Khorrami M, Dehkhoda P, Mazandaran R M, et al. Fast shielding effectiveness calculation of metallic enclosures with apertures using a multiresolution method of moments technique[J]. IEEE Transactions on Electromagnetic Compatibility, 2010, 52(1): 230-235. doi: 10.1109/TEMC.2009.2034644
    [4] Mrdakovic B L, Kolundzija B M. Accurate analysis of electromagnetic shielding problems using MoM SIE method[C]//2016 International Symposium on Antennas and Propagation. 2016: 162-163.
    [5] Lü Qilong, Lv Zhiqing, Xue Zhenhao, et al. Research on shielding effectiveness of spacecraft shielding box to electromagnetic pulse[C]//2020 International Conference on Microwave and Millimeter Wave Technology. 2020: 1-3.
    [6] Campione S, Warne L K, Reines I C, et al. Modeling and experiments of high-quality factor cavity shielding effectiveness[C]//2019 International Applied Computational Electromagnetics Society Symposium. 2019: 1-2.
    [7] 宋航, 胡涛, 侯德亭, 等. 有孔双层屏蔽腔体屏蔽效能的多模分析方法[J]. 微波学报, 2009, 25(2):25-29,82. (Song Hang, Hu Tao, Hou Deting, et al. Shielding effectiveness of double layer rectangular enclosure with apertures over wide frequency range[J]. Journal of Microwaves, 2009, 25(2): 25-29,82
    [8] Li Fulin, Han Jihong, Zhang Chang. Study on the influence of PCB parameters on the shielding effectiveness of metal cavity with holes[C]//2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference. 2019: 383-387.
    [9] Radivojević M V, Rupčić S, Alilović V, et al. The shielding effectiveness measurements of a rectangular enclosure perforated with slot aperture[C]//2017 International Conference on Smart Systems and Technologies. 2017: 121-126.
    [10] Rabat A, Bonnet P, Drissi K E K, et al. Analytical formulation for shielding effectiveness of a lossy enclosure containing apertures[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 60(5): 1384-1392. doi: 10.1109/TEMC.2017.2764327
    [11] Holland R, John R S. Statistical electromagnetics[M]. Boca Raton: CRC Press, 1999.
    [12] 赵远, 赵翔, 闫丽萍, 等. 开有不同矩形孔缝的电大腔中场分布的统计分析[J]. 四川大学学报(自然科学版), 2014, 51(4):738-744. (Zhao Yuan, Zhao Xiang, Yan Liping, et al. Statistical analysis of EM field distribution in the electrically large enclosure with different rectangle aperture[J]. Journal of Sichuan University (Natural Science Edition), 2014, 51(4): 738-744
    [13] 罗静雯, 杜平安, 任丹, 等. 基于BLT方程的双层腔体屏蔽效能计算方法[J]. 强激光与粒子束, 2015, 27:113201. (Luo Jingwen, Du Ping’an, Ren Dan, et al. BLT equation-based approach for calculating shielding effectiveness of double layer rectangular enclosures with apertures[J]. High Power Laser and Particle Beams, 2015, 27: 113201 doi: 10.11884/HPLPB201527.113201
    [14] 公延飞, 郝建红, 蒋璐行, 等. 基于Bethe小孔耦合理论和镜像原理的双腔体电磁泄漏的解析模型[J]. 电工技术学报, 2018, 33(9):2139-2147. (Gong Yanfei, Hao Jianhong, Jiang Luhang, et al. An analytical model for electromagnetic leakage from double cascaded enclosures based on Bethe's small aperture coupling theory and mirror procedure[J]. Transactions of China Electrotechnical Society, 2018, 33(9): 2139-2147
    [15] 王殿海, 石成英, 蔡星会, 等. 有内置薄板腔体的HEMP屏蔽效能研究[J]. 微波学报, 2019, 35(1):87-90. (Wang Dianhai, Shi Chengying, Cai Xinghui, et al. Research on the shielding effectiveness of rectangular cavity with embedded thin plate under HEMP irradiation[J]. Journal of Microwaves, 2019, 35(1): 87-90
    [16] Hill D A, Ma M T, Ondrejka A R, et al. Aperture excitation of electrically large, lossy cavities[J]. IEEE Transactions on Electromagnetic Compatibility, 1994, 36(3): 169-178. doi: 10.1109/15.305461
    [17] Junqua I, Parmantier J P, Issac F. A network formulation of the power balance method for high-frequency coupling[J]. Electromagnetics, 2005, 25(7/8): 603-622.
    [18] 赵翔, 张华彬, 刘娟, 等. 基于PWB-EMT的电磁效应评估方法与软件实现[J]. 河北科技大学学报, 2011, 32(S2):165-167. (Zhao Xiang, Zhang Huabin, Liu Juan, et al. Electromagnetic effect evaluation method and software implementation based on PWB-EMT[J]. Journal of Hebei University of Science and Technology, 2011, 32(S2): 165-167
    [19] Flintoftid. AEGPWB: an open source electromagnetic power balance toolbox and solver[DB/OL]. [2016-05-18]. https://github.com/flintoftid/aegpwb.
    [20] Bremner P G, Bahadorzadeh M, West J C, et al. Statistical field model for performance of localized RF absorption blankets in a payload fairing[C]//2021 IEEE International Joint EMC/SI/PI and EMC Europe Symposium. 2021: 136-141.
    [21] Pazos J J, Phillips J, Miller E, et al. Estimating fields in spacecraft cavities: experimental validation of finite-difference time-domain and power balance computational tools[C]//2021 IEEE International Joint EMC/SI/PI and EMC Europe Symposium. 2021: 798-803.
    [22] Junqua I, Parmantier J P, Ridel M. Modeling of high frequency coupling inside oversized structures by asymptotic and PWB methods[C]//2011 International Conference on Electromagnetics in Advanced Applications. 2011: 68-71.
  • 加载中
图(6)
计量
  • 文章访问数:  592
  • HTML全文浏览量:  299
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-15
  • 修回日期:  2022-04-07
  • 网络出版日期:  2022-04-13
  • 刊出日期:  2022-05-15

目录

    /

    返回文章
    返回