Optical component damage monitoring method based on acoustic emission
-
摘要: 光学元件损伤是限制激光通量水平提高的重要因素之一。为快速、准确地检测光学元件损伤是否产生,支撑光学元件循环修复策略的使用,研究并提出了基于声发射技术的光学元件损伤检测方法,通过研究光学元件损伤产生的声发射信号特征,判断光学元件是否发生损伤,使用一种基于二次相关和相关峰精确插值(FICP)的时延估计算法,通过仿真验证了该算法的可行性,结合时差定位原理建立了损伤位置求解方法,并通过实验进行了验证。研究结果表明:该方法能从监测信号中快速地获得损伤的位置估计,其平均定位误差为8.61 mm,计算时间为0.143 s/次,对大口径光学元件的损伤在线监测具有应用潜力。Abstract: Optical component damage is one of the important factors that limit the improvement of laser flux level. To quickly and accurately detect whether optical component damage occurs and support the use of optical component cycle repair strategy, we proposed an optical component damage detection method based on acoustic emission technology. Whether the optical component is damaged was judged by studying the characteristics of acoustic emission signals generated by optical component damage. A time delay estimation algorithm based on quadratic correlation and fine interpolation of correlation peak (FICP) was developed. The feasibility of the algorithm was verified by simulation. Combined with the principle of time difference location, a method for solving the damage location was established and verified by experiments. The results show that the method can quickly obtain the damage location estimation from the monitoring signal. The average positioning error is 8.61 mm, and the average calculation time for positioning is 0.143 s. The method has the potential to be applied to on-line damage monitoring of large-aperture optical components.
-
Key words:
- laser optics /
- damage monitoring /
- acoustic emission /
- time delay estimation /
- sound localization
-
表 1 不同判据对熔石英损伤判定情况
Table 1. Different criteria for judging fused silica damage
criteria number of damage points AE signal amplitude judge 13 microscopic observation 14 (damage size < 50 μm
at one of the test points) -
[1] 魏富鹏. 大口径光学元件弱特征损伤智能检测方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2019Wei Fupeng. Research on intelligent inspection method of weak feature damage in large aperture final optics[D]. Harbin: Harbin Institute of Technology, 2019 [2] Kasai N, Utatsu K, Park S, et al. Correlation between corrosion rate and AE signal in an acidic environment for mild steel[J]. Corrosion Science, 2009, 51(8): 1679-1684. doi: 10.1016/j.corsci.2009.04.021 [3] 王宗炼, 任会兰, 宁建国. 基于小波变换降噪的声发射源定位方法[J]. 振动与冲击, 2018, 37(4):226-232,248. (Wang Zonglian, Ren Huilan, Ning Jianguo. Acoustic emission source location based on wavelet transform de-noising[J]. Journal of Vibration and Shock, 2018, 37(4): 226-232,248Wang Zonglan, Ren Huilan, Ning Jianguo. Acoustic emission source location based on wavelet transform de-noising[J]. Journal of Vibration and Shock, 2018, 37(4): 226-232, 248 [4] Kaiser W. Recent progress in stimulated Raman scattering[J]. IEEE Journal of Quantum Electronics, 1968, 4: 381. [5] Egle D M, Tatro C A. Analysis of acoustic-emission strain waves[J]. The Journal of the Acoustical Society of America, 1967, 41(2): 321-327. doi: 10.1121/1.1910341 [6] Van Hecke B, He D, Qu Yongzhi. On the use of spectral averaging of acoustic emission signals for bearing fault diagnostics[J]. Journal of Vibration and Acoustics, 2014, 136: 061009. doi: 10.1115/1.4028322 [7] Jiao Jingpin, He Cunfu, Wu Bin, et al. A new acoustic emission source location technique based on wavelet transform and mode analysis[J]. Frontiers of Mechanical Engineering in China, 2006, 1(3): 341-345. doi: 10.1007/s11465-006-0006-4 [8] 苏俊宏, 王坤坤, 梁海峰. 激光薄膜损伤的声频判别方法[J]. 光学与光电技术, 2014, 12(1):27-31. (Su Junhong, Wang Kunkun, Liang Haifeng. Acoustic frequency method of detection of optical thin films damage[J]. Optics & Optoelectronic Technology, 2014, 12(1): 27-31 doi: 10.3969/j.issn.1672-3392.2014.01.006Su Junhong, Wang Kunkun, Liang Haifeng. Acoustic frequency method of detection of optical thin films damage[J]. Optics & Optoelectronic Technology, 2014, 12(1): 27-31 doi: 10.3969/j.issn.1672-3392.2014.01.006 [9] 易木俣. 基于光声法的光学元件损伤特性研究[D]. 苏州: 苏州大学, 2017Yi Muyu. Study on laser-induced damage phenomenon in optical components with photo-acoustic method[D]. Suzhou: Soochow University, 2017 [10] 陈珂骏. 激光诱导熔石英损伤的光声频谱分析研究[D]. 苏州: 苏州大学, 2019Chen Kejun. Laser-induced damage on fused silica with photo-acoustic spectrum analysis[D]. Suzhou: Soochow University, 2019 [11] 王牛俊, 陈莉. 声发射检测技术的原理及应用[J]. 广西轻工业, 2010, 26(3):49-50. (Wang Niujun, Chen Li. The theory & application of acoustic emission testing technique[J]. Guangxi Journal of Light Industry, 2010, 26(3): 49-50 doi: 10.3969/j.issn.1003-2673.2010.03.025Wang Niujun, Chen Li. The theory & application of acoustic emission testing technique[J]. Guangxi Journal of Light Industry, 2010, 26(3): 49-50 doi: 10.3969/j.issn.1003-2673.2010.03.025 [12] 俞一鸣, 姚远, 程学虎. TDOA定位技术和实际应用简介[J]. 中国无线电, 2013(11):57-58,70. (Yu Yiming, Yao Yuan, Cheng Xuehu. Introduction to TDOA positioning technology and its practical application[J]. China Radio, 2013(11): 57-58,70 doi: 10.3969/j.issn.1672-7797.2013.11.034Yu Yiming Yao Yuan, Cheng Xuehu. Introduction to TDOA positioning technology and its practical application[J]. China Radio, 2013(11): 57-58, 70 doi: 10.3969/j.issn.1672-7797.2013.11.034 [13] 茅惠达, 张玲华. 声源定位中广义互相关时延估计算法的研究[J]. 计算机工程与应用, 2016, 55(22):138-142. (Mao Huida, Zhang Linghua. Research on generalized cross correlation algorithm for time delay estimation in sound source localization[J]. Computer Engineering and Applications, 2016, 55(22): 138-142 doi: 10.3778/j.issn.1002-8331.1501-0090Mao Huida, Zhang Linghua. Research on generalized cross correlation algorithm for time delay estimation in sound source localization[J]. Computer Engineering and Applications, 2016, 55(22): 138-142 doi: 10.3778/j.issn.1002-8331.1501-0090 [14] 唐娟, 行鸿彦. 基于二次相关的时延估计方法[J]. 计算机工程, 2007, 33(21):265-267. (Tang Juan, Xing Hongyan. Time delay estimation based on second correlation[J]. Computer Engineering, 2007, 33(21): 265-267 doi: 10.3969/j.issn.1000-3428.2007.21.094Tang Juan, Xing Hongyan. Time delay estimation based on second correlation[J]. Computer Engineering, 2007, 33(21): 265-267 doi: 10.3969/j.issn.1000-3428.2007.21.094 [15] 韩洁, 吴长奇. 相关峰插值的二次相关锐化时延估计方法[J]. 信号处理, 2014, 30(10):1241-1244. (Han Jie, Wu Changqi. Second correlated and sharpen the correlation peak interpolation time delay estimation method[J]. Journal of Signal Processing, 2014, 30(10): 1241-1244 doi: 10.3969/j.issn.1003-0530.2014.10.017Han Jie, Wu Changqi. Second correlated and sharpen the correlation peak interpolation time delay estimation method[J]. Journal of Signal Processing, 2014, 30(10): 1241-1244 doi: 10.3969/j.issn.1003-0530.2014.10.017 [16] 雍龙泉. 非线性方程牛顿迭代法研究进展[J]. 数学的实践与认识, 2021, 51(15):240-249. (Yong Longquan. Advances in Newton’s iterative methods for nonlinear equation[J]. Mathematics in Practice and Theory, 2021, 51(15): 240-249Yong Longquan. Advances in newton’s iterative methods for nonlinear equation[J]. Mathematics in Practice and Theory, 2021, 51(15): 240-249 [17] 金钟山, 刘时风, 耿荣生, 等. 曲面和三维结构的声发射源定位方法[J]. 无损检测, 2002, 24(5):205-211. (Jin Zhongguo, Liu Shifeng, Geng Rongsheng, et al. Location of acoustic emission source on curved surfaces and three-dimension structures[J]. Nondestructive Testing, 2002, 24(5): 205-211 doi: 10.3969/j.issn.1000-6656.2002.05.008Jin Zhongguo, Liu Shifeng, Geng Rongsheng, et al. Location of acoustic emission source on curved surfaces and three-dimension structures[J]. Nondestructive Testing, 2002, 24(5): 205-211 doi: 10.3969/j.issn.1000-6656.2002.05.008