留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于单元件干涉仪的计算机断层扫描重建光纤三维折射率分布

王驰 解翔宇 邓颖 罗韵 李玮 张夏 冯国英

王驰, 解翔宇, 邓颖, 等. 基于单元件干涉仪的计算机断层扫描重建光纤三维折射率分布[J]. 强激光与粒子束, 2022, 34: 041006. doi: 10.11884/HPLPB202234.220035
引用本文: 王驰, 解翔宇, 邓颖, 等. 基于单元件干涉仪的计算机断层扫描重建光纤三维折射率分布[J]. 强激光与粒子束, 2022, 34: 041006. doi: 10.11884/HPLPB202234.220035
Wang Chi, Xie Xiangyu, Deng Ying, et al. Three-dimensional refractive index reconstruction of optical fibers based on single-element interferometer computed tomography[J]. High Power Laser and Particle Beams, 2022, 34: 041006. doi: 10.11884/HPLPB202234.220035
Citation: Wang Chi, Xie Xiangyu, Deng Ying, et al. Three-dimensional refractive index reconstruction of optical fibers based on single-element interferometer computed tomography[J]. High Power Laser and Particle Beams, 2022, 34: 041006. doi: 10.11884/HPLPB202234.220035

基于单元件干涉仪的计算机断层扫描重建光纤三维折射率分布

doi: 10.11884/HPLPB202234.220035
基金项目: 等离子体物理重点实验室基金项目(6142A04200210);国家自然科学基金委员会-中国工程物理研究院联合基金项目(U1730141); 四川省科技计划资助项目(2020YFH0110)
详细信息
    作者简介:

    王 驰,1059345965@qq.com

    通讯作者:

    李 玮,weili@scu.edu.cn

    冯国英,guoing_feng@scu.edu.cn

  • 中图分类号: TB87.1

Three-dimensional refractive index reconstruction of optical fibers based on single-element interferometer computed tomography

  • 摘要: 提出了一种基于单元件干涉仪的计算机断层扫描方案,用于测量光纤三维折射率分布。该单元件干涉仪基于显微成像的原理,提高了系统的横向分辨率。利用快速傅里叶变换提取相位,采用滤波反投影算法重建了光纤的折射率分布。搭建了实验测量装置,实际测量了单模和多模光纤的折射率分布。结果表明,提供的方法可以简单快速地得到全光场数据,同时具有无损和非接触的优点,并且光路结构紧凑稳定,可为计算机断层扫描设备的小型化提供一种新的思路。
  • 图  1  基于单元件干涉的显微断层成像的光纤折射率测量

    Figure  1.  Optical fiber refractive index measurement of micro tomography based on unit interference

    图  2  单模光纤、多模光纤、熊猫型保偏光纤和柚子型光子晶体光纤在θ=0o,22.5o,45o,90o时的仿真投影积分

    Figure  2.  Simulation projection integrals of single-mode fiber, multi-mode fiber, panda-type polarization-maintaining fiber and grapefruit-type photonic crystal fiber at θ=0o, 22.5o, 45o, 90o

    图  3  单模光纤、多模光纤、熊猫型保偏光纤和柚子型光子晶体光纤在不同投影数量和角度下的正弦图

    Figure  3.  Sinograms of single-mode fiber, multi-mode fiber, panda-type PM fiber, and grapefruit-type photonic crystal fiber at different numbers of projections and angles

    图  4  根据图3中正弦图反投影出的光纤折射率分布

    Figure  4.  Refractive index distribution of the fiber according to the back-projection of the sinogram in Fig. 3

    图  5  单模光纤、多模光纤的干涉图、相位分布和三维显示

    Figure  5.  Interferogram, phase distribution 3D display of single-mode and multi-mode fibers

    图  6  单模光纤、多模光纤沿断层面直径方向和横截面的折射率分布

    Figure  6.  Refractive index distribution of the single-mode fiber and multi-mode fiber along the diameter direction and cross-section of the fault plane

  • [1] Zhu Yongkai, Tian Guiyun, Lu Rongsheng, et al. A review of optical NDT technologies[J]. Sensors, 2011, 11(8): 7773-7798. doi: 10.3390/s110807773
    [2] Jing Jianying, Liu Kun, Jiang Junfeng, et al. Performance improvement approaches for optical fiber SPR sensors and their sensing applications[J]. Photonics Research, 2022, 10(1): 126-147. doi: 10.1364/PRJ.439861
    [3] Zhu Zongda, Ba Dexin, Liu Lu, et al. Temperature-compensated distributed refractive index sensor based on an etched multi-core fiber in optical frequency domain reflectometry[J]. Optics Letters, 2021, 46(17): 4308-4311. doi: 10.1364/OL.432405
    [4] Bachim B L, Gaylord T K. Microinterferometric optical phase tomography for measuring small, asymmetric refractive-index differences in the profiles of optical fibers and fiber devices[J]. Applied Optics, 2005, 44(3): 316-327. doi: 10.1364/AO.44.000316
    [5] Pace P, Huntington S T, Lyytikäinen K, et al. Refractive index profiles of Ge-doped optical fibers with nanometer spatial resolution using atomic force microscopy[J]. Optics Express, 2004, 12(7): 1452-1457. doi: 10.1364/OPEX.12.001452
    [6] Poumellec B, Guenot P, Nadjo R, et al. Information obtained from the surface profile of a cut single-mode fiber[J]. Journal of Lightwave Technology, 1999, 17(8): 1357-1365. doi: 10.1109/50.779157
    [7] Fontaine N H, Young M. Two-dimensional index profiling of fibers and waveguides[J]. Applied Optics, 1999, 38(33): 6836-6844. doi: 10.1364/AO.38.006836
    [8] Pan Zhelang, Liang Zhiqiang, Li Shiping, et al. Microtomography of the polarization-maintaining fiber by digital holography[J]. Optical Fiber Technology, 2015, 22: 46-51. doi: 10.1016/j.yofte.2015.01.003
    [9] Pan Feng, Deng Yating, Ma Xichao, et al. Measurement of spatial refractive index distributions of fusion spliced optical fibers by digital holographic microtomography[J]. Optics Communications, 2017, 403: 370-375. doi: 10.1016/j.optcom.2017.05.045
    [10] Withers P J, Bouman C, Carmignato S, et al. X-ray computed tomography[J]. Nature Reviews Methods Primers, 2021, 1: 18. doi: 10.1038/s43586-021-00015-4
    [11] Pillon J, Collignon M, Rattier M, et al. Three-dimensional topological reconstruction of the sensing coil of a fiber-optic gyroscope using X-ray computed tomography[J]. Journal of Lightwave Technology, 2021, 39(14): 4861-4872. doi: 10.1109/JLT.2021.3068605
    [12] Lin Y C, Chen Huichi, Tu H Y, et al. Optically driven full-angle sample rotation for tomographic imaging in digital holographic microscopy[J]. Optics Letters, 2017, 42(7): 1321-1324. doi: 10.1364/OL.42.001321
    [13] Levine Z H, Garboczi E J, Peskin A P, et al. X-ray computed tomography using partially coherent Fresnel diffraction with application to an optical fiber[J]. Optics Express, 2021, 29(2): 1788-1804. doi: 10.1364/OE.414398
    [14] Frank S, Seiler M, Bliedtner J. Three-dimensional evaluation of subsurface damage in optical glasses with ground and polished surfaces using FF-OCT[J]. Applied Optics, 2021, 60(8): 2118-2126. doi: 10.1364/AO.413090
    [15] Zeleznik R, Foldyna B, Eslami P, et al. Deep convolutional neural networks to predict cardiovascular risk from computed tomography[J]. Nature Communications, 2021, 12: 715. doi: 10.1038/s41467-021-20966-2
    [16] Kim G, Lee S, Shin S, et al. Three-dimensional label-free imaging and analysis of Pinus pollen grains using optical diffraction tomography[J]. Scientific Reports, 2018, 8: 1782. doi: 10.1038/s41598-018-20113-w
    [17] Wahba H H, Kreis T. Characterization of graded index optical fibers by digital holographic interferometry[J]. Applied Optics, 2009, 48(8): 1573-1582. doi: 10.1364/AO.48.001573
    [18] 潘哲朗, 李仕萍, 钟金钢. 用数字全息层析成像技术测量毛细管的内径及壁厚[J]. 光学 精密工程, 2013, 21(7):1643-1650. (Pan Zhelang, Li Shiping, Zhong Jin’gang. Measurement of inner diameter and wall thickness for micro-capillary by digital holographic tomography[J]. Optics and Precision Engineering, 2013, 21(7): 1643-1650 doi: 10.3788/OPE.20132107.1643
    [19] 苏玲珑, 马利红, 王辉, 等. 基于数字全息显微断层成像的光纤折射率三维定量测量[J]. 中国激光, 2013, 40:1008002. (Su Linglong, Ma Lihong, Wang Hui, et al. Three-dimensional refractive index quantitative measurement for optical fiber by digital holographic tomography[J]. Chinese Journal of Lasers, 2013, 40: 1008002 doi: 10.3788/CJL201340.1008002
    [20] Wahba H H. Reconstruction of 3D refractive index profiles of PM PANDA optical fiber using digital holographic method[J]. Optical Fiber Technology, 2014, 20(5): 520-526. doi: 10.1016/j.yofte.2014.06.002
    [21] Hamza A A, Sokkar T Z N, El-Farahaty K A, et al. A proposed method to reconstruct the three-dimensional dispersion profile of polymeric fibres based on variable wavelength interferometry[J]. Journal of Microscopy, 2015, 257(2): 123-132. doi: 10.1111/jmi.12191
    [22] 谷婷婷, 黄素娟, 闫成, 等. 基于数字全息图的光纤折射率测量研究[J]. 物理学报, 2015, 64:064204. (Gu Tingting, Huang Sujuan, Yan Cheng, et al. Refractive index measurement research for optical fiber based on digital hologram[J]. Acta Physica Sinica, 2015, 64: 064204 doi: 10.7498/aps.64.064204
    [23] 黄素娟, 曾俊璋, 闫成, 等. 扭转保偏光纤的三维折射率测量[J]. 光子学报, 2017, 46:0612001. (Huang Sujuan, Zeng Junzhang, Yan Cheng, et al. 3D refractive index measurement for spun polarization-maintaining optical fiber[J]. Acta Photonica Sinica, 2017, 46: 0612001 doi: 10.3788/gzxb20174606.0612001
    [24] Wang Weiping, Huang Sujuan, Chen Yi, et al. Three-dimensional refractive index measurement of special optical fiber based on optical vortex phase-shifting digital holographic microscopy[J]. Optical Engineering, 2019, 58: 034108.
    [25] Sung Y, Yoshida S, Kato Y, et al. Three-dimensional densification measurement of Vickers-indented glass using digital holographic tomography[J]. Journal of the American Ceramic Society, 2019, 102(10): 5866-5872. doi: 10.1111/jace.16508
    [26] Yassien K M, Agour M, El-Bakary M A. Determination of physical properties of irradiated PTFE fibers using digital holographic microscopy[J]. Applied Physics B, 2019, 125: 180.
    [27] Omar E Z. Adaptive demodulation for phase information and opto-mechanical properties of fibres from blurred digital holography pattern[J]. Optical and Quantum Electronics, 2022, 54: 31. doi: 10.1007/s11082-021-03403-y
    [28] Raslan M I, Sokkar T Z N, Hamza A A. An algorithm for direct birefringence measurements using intensities of digital photoelastic patterns of fibres[J]. Applied Physics B, 2022, 128: 5.
    [29] Zhang Tao, Feng Guoying, Song Zheyi, et al. A single-element interferometer for measuring refractive index of transparent liquids[J]. Optics Communications, 2014, 332: 14-17. doi: 10.1016/j.optcom.2014.06.028
    [30] Lan Bin, Feng Guoying, Zhang Tao, et al. Dynamic measurement of 2D refractive index distribution of NaCl solutions[J]. Journal of Modern Optics, 2017, 64(1): 8-16. doi: 10.1080/09500340.2016.1205227
    [31] Takeda M, Ina H, Kobayashi S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry[J]. Journal of the Optical Society of America, 1982, 72(1): 156-160. doi: 10.1364/JOSA.72.000156
    [32] Lan Bin, Feng Guoying, Dong Zheliang, et al. A carrier removal method based on frequency domain self-filtering for interferogram analysis[J]. Optik, 2016, 127(15): 5961-5967. doi: 10.1016/j.ijleo.2016.04.008
    [33] Lan Bin, Feng Guoying, Zhang Tao, et al. Phase demodulation from a spatial carrier fringe pattern by spatial-temporal fringes method[J]. Journal of Optics, 2016, 18: 125704. doi: 10.1088/2040-8978/18/12/125704
    [34] Lan Bin, Feng Guoying, Zhang Tao, et al. Accurate carrier-removal method for interferogram analysis[J]. Optical Engineering, 2017, 56: 034101. doi: 10.1117/1.OE.56.3.034101
  • 加载中
图(6)
计量
  • 文章访问数:  711
  • HTML全文浏览量:  320
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-22
  • 修回日期:  2022-03-04
  • 网络出版日期:  2022-04-06
  • 刊出日期:  2022-03-19

目录

    /

    返回文章
    返回