Design of Wolter microscope with short focal length and high magnification for laser fusion experiment
-
摘要: 围绕内爆压缩及阻滞阶段相关物理实验的诊断需求,提出了一种满足阿贝正弦条件的短焦距高放大倍率Wolter-Ⅲ型X射线显微镜的光学设计。详细介绍了Wolter-Ⅲ型显微镜的结构特点和设计方法,与Wolter-Ⅰ型相比可以通过将主平面向靠近物点方向移动的方式减小系统焦距,从而获得更大的放大倍数,实现显微镜与探测器的像质匹配,提高诊断系统的空间分辨。由光线追迹可以得出,在±190 μm的视场范围内,空间分辨率优于3 μm;在±240 μm范围内分辨率优于5 μm;在±300 μm范围内分辨率优于8 μm,几何集光立体角约为5×10−6 sr。Abstract: To meet the diagnostic requirements of physical experiments in the implosion compression and arrest stage, an optical design of Wolter-Ⅲ X-ray microscope with short focal length and high magnification satisfying the Abbe sine condition was proposed. This paper introduces, the structural characteristics and design method of Wolter type Ⅲ microscope in detail. Compared with Wolter typeⅠmicroscope, the focal length of the system can be reduced by moving the main plane to the direction of the object point, so as to obtain a larger magnification. The image quality matching between microscope and detector is realized to improve the spatial resolution of diagnostic system. It can be obtained by ray tracing that the spatial resolution is better than 3 μm in the field of view of ± 190 μm. The resolution is better than 5 μm in the field of view of ±240 μm. In the field of view of ±300 μm, the resolution is better than 8 μm. The geometric solid light angle is about 5×10−6 sr.
-
表 1 Wolter-Ⅰ型和Wolter-Ⅲ型显微镜光学结构参数
Table 1. Optical structure parameters of Wolter-Ⅰ and Wolter-Ⅲ microscopes
contour object distance/mm grazing angle/(°) a/mm b/mm mirror length/mm f/mm magnification Wolter-I hyperboloid 292.4 0.4 165.8 3.0 15 300 20 ellipsoid 307.8 0.4 3 315.9 13.6 15.8 Wolter-Ⅲ hyperboloid 307.8 0.3 2 956.0 3.6 8 242.3 25 ellipsoid 292.4 0.4 194.0 1.2 10 表 2 Wolter-Ⅰ型和Wolter-Ⅲ型系统仿真结果比较
Table 2. Comparison of simulation results between Wolter-Ⅰ and Wolter-Ⅲ systems
the field of view corresponds to the spatial resolution/μm solid light angle/sr 1 μm 3 μm 5 μm 8 μm Wolter-Ⅰ ±260 ±460 ±600 ±760 6.1×10−5 Wolter-Ⅲ ±100 ±190 ±240 ±300 5×10−6 -
[1] Yamauchi K, Yabashi M, Ohashi H, et al. Nanofocusing of X-ray free-electron lasers by grazing-incidence reflective optics[J]. Journal of Synchrotron Radiation, 2015, 22(Pt 3): 592-598. [2] Wolter H. Spiegelsysteme streifenden einfalls als abbildende optiken für röntgenstrahlen[J]. Annalen der Physik, 1952, 445(1/2): 94-114. [3] Matsuyama S, Mimura H, Yumoto H, et al. Development of mirror manipulator for hard-X-ray nanofocusing at sub-50-nm level[J]. Review of Scientific Instruments, 2006, 77: 093107. doi: 10.1063/1.2349594 [4] Saha T T. Aberrations for grazing incidence telescopes[J]. Applied Optics, 1988, 27(8): 1492-1498. doi: 10.1364/AO.27.001492 [5] Saha T T. Transverse ray aberrations for paraboloid-hyperboloid telescopes[J]. Applied Optics, 1985, 24(12): 1856-1863. doi: 10.1364/AO.24.001856 [6] Yamada J, Matsuyama S, Yasuda S, et al. Development of concave-convex imaging mirror system for a compact and achromatic full-field X-ray microscope[C]//Proceedings of SPIE 10386, Advances in X-Ray/EUV Optics and Components XII. 2017. [7] Yamada J, Matsuyama S, Sano Y, et al. Simulation of concave–convex imaging mirror system for development of a compact and achromatic full-field X-ray microscope[J]. Applied Optics, 2017, 56(4): 967-974. doi: 10.1364/AO.56.000967 [8] Yamada J, Matsuyama S, Sano Y, et al. Compact reflective imaging optics in hard X-ray region based on concave and convex mirrors[J]. Optics Express, 2019, 27(3): 3429-3438. doi: 10.1364/OE.27.003429 [9] Serlemitsos P J, Soong Y, Chan K W, et al. The X-ray telescope onboard Suzaku[J]. Publications of the Astronomical Society of Japan, 2007, 59(s1): S9-S21. [10] Takahashi T, Mitsuda K, Kelley R, et al. The ASTRO-H X-ray observatory[C]//Proceedings of SPIE 8443, Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray. 2012: 84431Z. [11] Zuo Fuchang, Mei Zhiwu, Ma Tao, et al. Design and development of grazing incidence X-ray mirrors[C]//Proceedings of SPIE 9796, Selected Papers of the Photoelectronic Technology Committee Conferences Held November 2015. 2016: 97961O. [12] Chon K S, Namba Y, Yoon K H. Optimization of a Wolter type I mirror for a soft X-ray microscope[J]. Precision Engineering, 2006, 30(2): 223-230. doi: 10.1016/j.precisioneng.2005.09.002 [13] 李亚冉, 谢青, 陈志强, 等. 激光等离子体诊断用Wolter型X射线显微镜的设计[J]. 强激光与粒子束, 2018, 30:062002. (Li Yaran, Xie Qing, Chen Zhiqiang, et al. Optical design of Wolter X-ray microscope for laser plasma diagnostics[J]. High Power Laser and Particle Beams, 2018, 30: 062002 doi: 10.11884/HPLPB201830.170440Li Yaran, Xie Qing, Chen Zhiqiang, et al. Optical design of Wolter X-ray microscope for laser plasma diagnostics[J]. High Power Laser and Particle Beams, 2018, 30: 062002,doi: 10.11884/HPLPB201830.170440 [14] Chon K S, Namba Y, Yoon K H. Single-point diamond turning of aspheric mirror with inner reflecting surfaces[J]. Key Engineering Materials, 2007, 364/366: 39-42. doi: 10.4028/www.scientific.net/KEM.364-366.39 [15] Chon K S, Namba Y. Single-point diamond turning of electroless nickel for flat X-ray mirror[J]. Journal of Mechanical Science and Technology, 2010, 24(8): 1603-1609. doi: 10.1007/s12206-010-0512-3