留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中子在大气中产生氮俘获γ的蒙特卡罗模拟研究

刘利 左应红 牛胜利 朱金辉 李夏至

刘利, 左应红, 牛胜利, 等. 中子在大气中产生氮俘获γ的蒙特卡罗模拟研究[J]. 强激光与粒子束, 2022, 34: 086002. doi: 10.11884/HPLPB202234.220055
引用本文: 刘利, 左应红, 牛胜利, 等. 中子在大气中产生氮俘获γ的蒙特卡罗模拟研究[J]. 强激光与粒子束, 2022, 34: 086002. doi: 10.11884/HPLPB202234.220055
Liu Li, Zuo Yinghong, Niu Shengli, et al. Monte Carlo simulation of neutron capture γ-rays from nitrogen in the atmosphere[J]. High Power Laser and Particle Beams, 2022, 34: 086002. doi: 10.11884/HPLPB202234.220055
Citation: Liu Li, Zuo Yinghong, Niu Shengli, et al. Monte Carlo simulation of neutron capture γ-rays from nitrogen in the atmosphere[J]. High Power Laser and Particle Beams, 2022, 34: 086002. doi: 10.11884/HPLPB202234.220055

中子在大气中产生氮俘获γ的蒙特卡罗模拟研究

doi: 10.11884/HPLPB202234.220055
基金项目: 强脉冲辐射环境模拟与效应国家重点实验室专项经费项目(SKLIPR.1504)
详细信息
    作者简介:

    刘 利,liuli@nint.ac.cn

  • 中图分类号: TL99

Monte Carlo simulation of neutron capture γ-rays from nitrogen in the atmosphere

  • 摘要: 为了精确计算早期核辐射,建立了中子及次级γ在大气中输运的蒙特卡罗计算模型,并利用几何分裂算法与时间分裂算法等减方差技巧提高计算效率,计算得到了距源点不同距离球面上中子与中子次级γ的信息,给出了不同位置不同时间的氮俘获γ能量释放率。开展了氮俘获γ能量释放率的规律性研究,并分析了中子能量对氮俘获γ的影响。结果表明,氮俘获γ能量释放率先随源点的距离增加而增大,在距源点约500 m达到峰值,而后随距离增加指数衰减。氮俘获γ能量释放率在时间上服从指数衰减规律,衰减时间在0.1 s左右。引入表征氮俘获γ辐射强度参数a和特征衰减时间参数$ \tau $,拟合得到了不同距离不同时间氮俘获γ能量释放率的快速计算公式。研究表明,氮俘获γ辐射强度、衰减时间及其空间分布均与中子能量密切相关。
  • 图  1  中子与14N的核反应截面

    Figure  1.  Reaction cross-section between neutron and 14N

    图  2  中子在大气中输运的几何模型

    Figure  2.  Geometry model of neutron transport in the atmosphere

    图  3  中子与低能中子面积分流和注量随距离变化

    Figure  3.  Neutron surface current and fluence vs. distances

    图  4  不同距离的中子次级γ能量释放率随时间变化

    Figure  4.  Neutron secondary gamma energy release rate vs time at different distances

    图  5  中子次级γ能量及能量释放率随距离变化

    Figure  5.  Neutron secondary gamma energy and energy release rate vs distances

    图  6  氮俘获γ能量释放率拟合参数公式

    Figure  6.  Fitting of neutron capture γ-ray energy release rate

    图  7  不同能量中子对氮俘获γ能量释放率随时间的变化

    Figure  7.  Neutron secondary gamma energy release rate vs. time for different neutron energy

    图  8  不同能量中子的氮俘获γ能量释放率拟合参数

    Figure  8.  Fitting parameters of neutron capture γ-ray energy release rate for different neutron energy

    表  1  采用不同减方差方法模拟所得γ注量率、相对误差及FOM因子

    Table  1.   Gamma ray fluence rate, relative error and FOM factor by using different variance reduction method

    distance/kmmethod of variance reductionfluence rate of γ at 1×10−2 s /(10−3cm−2·s−1)relative errorFOM factor
    2.0none59.88.1%2.7
    time splitting63.11.4%3.5
    geometry splitting62.42.3%11
    time splitting + geometry splitting62.20.6%13
    3.0none3.5736%0.14
    time splitting4.775.3%0.24
    geometry splitting4.714.9%2.4
    time splitting + geometry splitting4.581.1%3.2
    下载: 导出CSV

    表  2  不同距离球面处的中子及次级γ的平均能量

    Table  2.   Energy of neutron and secondary gamma at different distances

    distance/kmneutron energy/MeVgamma energy/MeV
    0.10.921.54
    0.30.391.46
    0.50.261.46
    1.00.171.33
    1.50.161.24
    2.00.181.24
    2.50.201.27
    3.00.231.32
    下载: 导出CSV
  • [1] Glasstone S, Dolan P J. The effects of nuclear weapons[M]. Washington: U. S. Department of Defense, 1977.
    [2] 乔登江. 核爆炸物理概论[M]. 北京: 国防工业出版社, 2003

    Qiao Dengjiang. Introduction to the physics of nuclear explosion[M]. Beijing: National Defense Industry Press, 2003
    [3] 王建国, 牛胜利, 张殿辉, 等. 高空核爆炸效应参数手册[M]. 北京: 原子能出版社, 2010

    Wang Jianguo, Niu Shengli, Zhang Dianhui, et al. Parameter handbook of high altitude nuclear detonation effect[M]. Beijing: Atomic Energy Press, 2010
    [4] 刘晓红, 王伟力, 孟涛, 等. 早期核辐射毁伤效应空间建模及剖切算法[J]. 火力与指挥控制, 2012, 37(9):190-192,197 doi: 10.3969/j.issn.1002-0640.2012.09.051

    Liu Xiaohong, Wang Weili, Meng Tao, et al. Research on 3D spatial data models for early nuclear radiation damage effects and slitting algorithm[J]. Fire Control & Command Control, 2012, 37(9): 190-192,197 doi: 10.3969/j.issn.1002-0640.2012.09.051
    [5] 王泰春, 贺云汉, 王玉芝. 电磁脉冲导论[M]. 北京: 国防工业出版社, 2011

    Wang Taichun, He Yunhan, Wang Yuzhi. Introduction to electromagnetic pulse[M]. Beijing: National Defense Industry Press, 2011
    [6] 郭力生, 鲁华玉. 防原医学[M]. 北京: 原子能出版社, 2006

    Guo Lisheng, Lu Huayu. Antigenic medicine[M]. Beijing: Atomic Energy Press, 2006
    [7] 王瑞宏, 姬志成, 裴鹿成. 深穿透粒子输运问题的自适应抽样方法[J]. 强激光与粒子束, 2012, 24(12):2941-2945 doi: 10.3788/HPLPB20122412.2941

    Wang Ruihong, Ji Zhicheng, Pei Lucheng. Adaptive sampling method in deep-penetration particle transport problem[J]. High Power Laser and Particle Beams, 2012, 24(12): 2941-2945 doi: 10.3788/HPLPB20122412.2941
    [8] 郑征, 梅其良, 邓力. 全局减方差方法的HBR-2基准题应用[J]. 原子能科学技术, 2018, 52(6):987-993 doi: 10.7538/yzk.2017.youxian.0510

    Zheng Zheng, Mei Qiliang, Deng Li. Global variance reduction method applied to HBR-2 benchmark[J]. Atomic Energy Science and Technology, 2018, 52(6): 987-993 doi: 10.7538/yzk.2017.youxian.0510
    [9] 申靖文, 胡也, 郑俞, 等. 蒙特卡罗输运模拟软件JMCT的深穿透屏蔽计算[J]. 强激光与粒子束, 2018, 30:046002 doi: 10.11884/HPLPB201830.170222

    Shen Jingwen, Hu Ye, Zheng Yu, et al. Three-dimensional Monte Carlo transport code JMCT in shielding engineering application[J]. High Power Laser and Particle Beams, 2018, 30: 046002 doi: 10.11884/HPLPB201830.170222
    [10] Booth T E. MCNP variance reduction examples[R]. LA-UR-12-25907, 2012.
    [11] 史涛, 马纪敏, 邱有恒, 等. 基于蒙特卡罗正算输运的全局减方差方法[J]. 强激光与粒子束, 2018, 30:016006 doi: 10.11884/HPLPB201830.170163

    Shi Tao, Ma Jimin, Qiu Youheng, et al. Global variance reduction based on forward Monte Carlo calculation[J]. High Power Laser and Particle Beams, 2018, 30: 016006 doi: 10.11884/HPLPB201830.170163
    [12] 郑征, 丁谦学, 周岩. 基于共轭离散纵标的减方差方法[J]. 强激光与粒子束, 2018, 30:026004 doi: 10.11884/HPLPB201830.170223

    Zheng Zheng, Ding Qianxue, Zhou Yan. Variance reduction method based on adjoint discrete ordinate[J]. High Power Laser and Particle Beams, 2018, 30: 026004 doi: 10.11884/HPLPB201830.170223
    [13] Culbertson C N, Hendricks J S. An assessment of the MCNP4C weight window[R]. LA-13668, 1999.
    [14] 左应红, 牛胜利, 商鹏, 等. 权窗减方差方法在γ射线长距离输运模拟中的应用[J]. 现代应用物理, 2020, 11:010205

    Zuo Yinghong, Niu Shengli, Shang Peng, et al. Weight window variance reduction method for simulating long distance γ-ray transport[J]. Modern Applied Physics, 2020, 11: 010205
    [15] 刘利, 左应红, 牛胜利, 等. 中子及次级γ在高空长距离蒙特卡罗输运模拟中的减方差方法[J]. 现代应用物理, 2022, 13:010202

    Liu Li, Zuo Yinghong, Niu Shengli, et al. A varaince reduction method for simulating the long-distance transport of neutrons and secondary γ in high-altitude atmosphere by Monte Carlo method[J]. Modern Applied Physics, 2022, 13: 010202
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  667
  • HTML全文浏览量:  280
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-25
  • 修回日期:  2022-04-22
  • 录用日期:  2022-04-28
  • 网络出版日期:  2022-04-29
  • 刊出日期:  2022-08-15

目录

    /

    返回文章
    返回