留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

9-cell超导腔快速预调谐方法研究

朱航 翟纪元 戴建枰

朱航, 翟纪元, 戴建枰. 9-cell超导腔快速预调谐方法研究[J]. 强激光与粒子束, 2022, 34: 104015. doi: 10.11884/HPLPB202234.220061
引用本文: 朱航, 翟纪元, 戴建枰. 9-cell超导腔快速预调谐方法研究[J]. 强激光与粒子束, 2022, 34: 104015. doi: 10.11884/HPLPB202234.220061
Zhu Hang, Zhai Jiyuan, Dai Jianping. Research on fast pre-tuning method of 9-cell superconducting cavities[J]. High Power Laser and Particle Beams, 2022, 34: 104015. doi: 10.11884/HPLPB202234.220061
Citation: Zhu Hang, Zhai Jiyuan, Dai Jianping. Research on fast pre-tuning method of 9-cell superconducting cavities[J]. High Power Laser and Particle Beams, 2022, 34: 104015. doi: 10.11884/HPLPB202234.220061

9-cell超导腔快速预调谐方法研究

doi: 10.11884/HPLPB202234.220061
详细信息
    作者简介:

    朱 航,zhuhang@ihep.ac.cn

    通讯作者:

    翟纪元,zhaijy@ihep.ac.cn

  • 中图分类号: TL503.2

Research on fast pre-tuning method of 9-cell superconducting cavities

  • 摘要: 对频率和场平坦度的预调谐是9-cell超导腔耗时最多的后处理工序之一,很快将成为国内相关大科学工程9-cell腔批量生产的瓶颈。首先介绍了9-cell超导腔两种常用的预调谐方法,即DESY方法和Cornell方法的原理,建模分析和比较了两种方法的计算精度和误差来源,给出Cornell方法调谐量计算的修正。然后结合9-cell超导腔预调谐实验研究,给出了快速预调谐方法:DESY的重建算法在低场平时精度较高且收敛迅速,可作为粗调;Cornell微扰算法在高场平时精度较高且测量迅速,可作为微调。结合两种调谐方式,将预调谐分为粗调和微调两步,可有效提升9-cell超导腔预调谐的速度。
  • 图  1  多cell超导腔电路模型

    Figure  1.  Circuit model of multi-cell cavity

    图  2  9-cell腔N005调谐前后场分布对比

    Figure  2.  9-cell cavity N005 field flatness tuning

    表  1  DESY与Cornell预调谐方法微扰量计算结果对比

    Table  1.   Comparison of perturbation calculation results between DESY and Cornell pre-tuning method

    cell
    number
    perturbation
    amount $ {e}_{\mathrm{r}\mathrm{e}\mathrm{f}}/{10}^{-4} $
    perturbation amount
    $ {e}_{\mathrm{D}\mathrm{E}\mathrm{S}\mathrm{Y}}/{10}^{-4} $
    perturbation amount
    $ {e}_{\mathrm{C}\mathrm{o}\mathrm{r}\mathrm{n}\mathrm{e}\mathrm{l}\mathrm{l}}/{10}^{-4} $
    154.966.21
    243.934.18
    3−4−4.03−4.84
    422.021.90
    5−3−2.99−2.70
    622.031.97
    7−1−0.99−1.35
    8−4−3.993.50
    966.025.92
    下载: 导出CSV

    表  2  DESY与Cornell预调谐方法微扰量计算结果百分比误差对比

    Table  2.   Comparison of perturbation percentage error of DESY and Cornell pre-tuning method

    cell
    number
    percentage error
    $ {E}_{\mathrm{D}\mathrm{E}\mathrm{S}\mathrm{Y}} $/%
    percentage error
    $ {E}_{\mathrm{C}\mathrm{o}\mathrm{r}\mathrm{n}\mathrm{e}\mathrm{l}\mathrm{l}} $/%
    1−0.8424.14
    2−1.874.61
    30.7120.96
    40.94−4.94
    5−0.47−9.98
    61.41−1.42
    7−1.4635.15
    8−0.03−12.49
    90.25−1.26
    下载: 导出CSV

    表  3  DESY和Cornell方法计算微扰量的均方根误差随场分布变化趋势

    Table  3.   Perturbation RMS error of DESY and Cornell method with different field flatness

    field
    flatness/%
    RMSE
    $ {\eta }_{\mathrm{d}\mathrm{e}\mathrm{s}\mathrm{y}}/{10}^{-4} $
    RMSE
    $ {\eta }_{\mathrm{C}\mathrm{o}\mathrm{r}\mathrm{n}\mathrm{e}\mathrm{l}\mathrm{l}}/{10}^{-4} $
    600.0552.11
    700.0762.74
    800.0330.96
    900.0150.45
    下载: 导出CSV

    表  4  场平调节至95%时不同方法调谐时间对比

    Table  4.   Pre-tuning time of different methods for 95% field flatness (FF)

    methodnumber of cells tunedmeasure time/htuning time/htotal time/h
    Cornell only22 (FF > 95%)0.26.66.8
    DESY only9 (FF < 90%)0.62.73.3
    combined method13 (FF > 95%)0.93.94.8
    下载: 导出CSV
  • [1] The CEPC Study Group. CEPC conceptual design report: volume 1—accelerator[R]. IHEP-AC-2018-01, 2018: 88-94.
    [2] Bambade P, Barklow T, Behnke T, et al. The international linear collider: a global project[R]. DESY 19-037, 2019: 8-12.
    [3] Singer W, Brinkmann A, Brinkmann R, et al. Production of superconducting 1.3-GHz cavities for the European X-ray Free Electron Laser[J]. Physical Review Accelerators and Beams, 2016, 19: 092001. doi: 10.1103/PhysRevAccelBeams.19.092001
    [4] Marhauser F, Daly E F, Fitzpatrick J A, et al. Status of the LCLS-II accelerating cavity production[C]//Proceedings of IPAC 2017. 2017: 1164-1166.
    [5] Huang Nanshun, Deng Haixiao, Liu Bo, et al. Features and futures of X-ray free-electron lasers[J]. The Innovation, 2021, 2: 100097.
    [6] 李波, 刘华昌, 王云, 等. CSNS-II超导椭球腔形变电场平坦度仿真分析[J]. 强激光与粒子束, 2021, 33:034001 doi: 10.11884/HPLPB202133.200259

    Li Bo, Liu Huachang, Wang Yun, et al. Simulating analysis on electric field flatness of deformed superconducting elliptical cavity for CSNS-II linac[J]. High Power Laser and Particle Beams, 2021, 33: 034001 doi: 10.11884/HPLPB202133.200259
    [7] Shishido T, Kako E, Noguchi S, et al. Frequency tuning of an accelerating mode in STF baseline SC cavities[C]//Proceedings of the 3rd Annual Meeting of Particle Accelerator Society of Japan and the 31th Linear Accelerator Meeting in Japan. 2006: 865-867.
    [8] Shishido T, Kako E, Noguchi S. Development of pre-tuning system for 972 MHz 9-cell superconducting cavities[C]//Proceedings of the 11th Workshop on RF Superconductivity. 2003: 425-428.
    [9] Tajima T, Furuya T, Suzuki T, et al. Pre-tuning of TRISTAN superconducting RF cavities[C]//Proceedings of the Fourth Workshop on RF Superconductivity. 1989: 821-847.
    [10] Sekutowicz J, Chen Yinghua, Wei Yixiang. A different tuning method for accelerating cavities[C]//Proceedings of the Fourth Workshop on RF Superconductivity. 1989: 849-857.
    [11] Padamsee H, Knobloch J, Hays T. RF superconductivity for accelerators[M]. New York: Wiley, 1998: 129-143.
    [12] Liu Yang, He Feisi, Xu Wencan, et al. Tuning for the first 9-cell TESLA cavity of PKU[J]. Chinese Physics C, 2010, 34(4): 496-498. doi: 10.1088/1674-1137/34/4/015
    [13] 郭志达, 李中泉, 翟纪元, 等. 1.3 GHz 9单元Ichiro型模型铜腔的预调谐[J]. 强激光与粒子束, 2011, 23(1):175-178 doi: 10.3788/HPLPB20112301.0175

    Guo Zhida, Li Zhongquan, Zhai Jiyuan, et al. Pretuning of 1.3 GHz 9-cell Ichiro copper cavity[J]. High Power Laser and Particle Beams, 2011, 23(1): 175-178 doi: 10.3788/HPLPB20112301.0175
    [14] Tang Zhengbo, Ma Zhenyu, Hou Hongtao, et al. Frequency control and pre-tuning of a large aperture 500 MHz 5-cell superconducting RF cavity[J]. Nuclear Science and Techniques, 2014, 25: 030102.
    [15] Arnold A, Buettig H, Janssen D, et al. Field reconstruction by passband frequency measurement at the Rossendorf SRF-gun cavity[C]//Proceedings of SRF 2007. 2007: 689-691.
    [16] Slater J C. Microwave electronics[J]. Reviews of Modern Physics, 1946, 18(4): 441-512. doi: 10.1103/RevModPhys.18.441
  • 加载中
图(2) / 表(4)
计量
  • 文章访问数:  629
  • HTML全文浏览量:  238
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-05
  • 修回日期:  2022-06-13
  • 网络出版日期:  2022-06-16
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回