Surface plasmon resonance refractive index sensor based on microstructured fiber with air-hole
-
摘要: 提出了一种基于表面等离子体共振(SPR)效应增强的光子晶体光纤折射率传感器。该传感器结构通过光纤熔接机拼接光子晶体光纤(PCF),在光子晶体光纤中间引入一个空气孔形成PCF-空气孔-PCF的光纤传感结构,随后使用磁控溅射镀膜工艺在其表面沉积一层薄金膜制备而成。实验探究了折射率及温度对传感器的响应。结果表明,在1.333~1.389的折射率范围内,所提出的传感器的平均折射率灵敏度为2 142.52 nm,且测量线性度为0.981,品质因子约13.10。实验结果表明该传感器对温度不敏感。相比于无空气孔的PCF传感结构,引入的空气孔增强了SPR效应,使得传感器拥有良好的共振峰深度。得益于上述优势,该类型传感器有望在生物医学、环境监测等领域得到应用。Abstract: A photonic crystal fiber refractive index (RI) sensor based on enhanced surface plasmon resonance (SPR) effect is proposed. The sensor structure is spliced with a photonic crystal fiber (PCF) by a fiber fusion splicer, so that an air hole is introduced in the middle of the photonic crystal fiber to form a PCF-air hole-PCF optical fiber sensing structure. Then, a thin gold film is deposited on its surface by using magnetron sputtering coating process. Experiments are carried out to investigate the response of the refractive index and temperature of the sensor. The results show that in the refractive index (RI) range of 1.333−1.389, the sensor has an average RI sensitivity of 2 142.52 nm, with a linearity of 0.981 and a quality factor about 13.10. Experimental results show that the sensor is not sensitive to temperature. Compared with the PCF sensing structure without air hole, the air hole introduced enhances the SPR effect, so that the sensor has a good resonance peak depth. Benefiting from the above advantages, this type of sensor is expected to be applied in fields such as biomedicine and environmental monitoring.
-
Key words:
- surface plasmon resonance /
- photonic crystal fiber /
- fiber-optic sensors /
- air hole
-
图 1 (a)传感结构示意图、(b)PCF之间引入空气孔的熔接图、(c)两段PCF之间塌陷区及空气孔的光学显微镜图像、(d)柚子型PCF端面显微镜图
Figure 1. (a) Schematic diagram of the sensing structure, (b) splicing diagram of air holes introduced between PCFs, (c) optical microscope image of the collapsed area and air holes between two PCFs, (d) surface microscopic image of the grapefruit-shaped PCF end
-
[1] Xian Pei, Feng Guoying, Ju Yao, et al. Single-mode all-fiber structured modal interference for temperature and refractive index sensing[J]. Laser Physics Letters, 2017, 14(8): 085101. doi: 10.1088/1612-202X/aa779c [2] Li Lecheng, Xia Li, Xie Zhenhai, et al. All-fiber Mach-Zehnder interferometers for sensing applications[J]. Optics Express, 2012, 20(10): 11109-11120. doi: 10.1364/OE.20.011109 [3] Li Xiaowei, Tan Jianchang, Li Wei, et al. A high-sensitivity optical fiber temperature sensor with composite materials[J]. Optical Fiber Technology, 2022, 68: 102821. doi: 10.1016/j.yofte.2022.102821 [4] Tan Jianchang, Feng Guoying, Zhang Shulin, et al. Dual spherical single-mode-multimode-single-mode optical fiber temperature sensor based on a Mach-Zehnder interferometer[J]. Laser Physics, 2018, 28(7): 075102. doi: 10.1088/1555-6611/aabb26 [5] 李筱薇, 谭建昌, 冯国英. 基于马赫-曾德干涉的全光纤双参量传感器[J]. 强激光与粒子束, 2021, 33(11):111010. (Li Xiaowei, Tan Jianchang, Feng Guoying. All-fiber dual-parameter sensor based on Mach-Zehnder interference[J]. High Power Laser and Particle Beams, 2021, 33(11): 111010 doi: 10.11884/HPLPB202133.210498 [6] Liao C R, Hu Tianyi, Wang D N. Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing[J]. Optics Express, 2012, 20(20): 22813-22818. doi: 10.1364/OE.20.022813 [7] Zhou Jiangtao, Wang Yiping, Liao Changrui, et al. Intensity modulated refractive index sensor based on optical fiber Michelson interferometer[J]. Sensors and Actuators B:Chemical, 2015, 208: 315-319. doi: 10.1016/j.snb.2014.11.014 [8] 范振凯, 张子超, 王保柱, 等. 基于表面等离子体共振效应的光子晶体光纤折射率传感器的研究进展[J]. 激光与光电子学进展, 2019, 56(7):070004. (Fan Zhenkai, Zhang Zichao, Wang Baozhu, et al. Research progress of photonic crystal fiber refractive index sensors based on surface plasmon resonance effect[J]. Laser & Optoelectronics Progress, 2019, 56(7): 070004 [9] 魏方皓, 张祥军, 唐守锋. 基于表面等离子体共振的光子晶体光纤折射率传感器的设计与分析[J]. 半导体光电, 2020, 41(1):35-38,43. (Wei Fanghao, Zhang Xiangjun, Tang Shoufeng. Design and analysis of photonic crystal fiber refractive index sensor based on surface plasmon resonance[J]. Semiconductor Optoelectronics, 2020, 41(1): 35-38,43 [10] Hassani A, Skorobogatiy M. Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics[J]. Optics Express, 2006, 14(24): 11616-11621. doi: 10.1364/OE.14.011616 [11] Tan Y C, Tou Z Q, Chow K K, et al. Graphene-deposited photonic crystal fibers for continuous refractive index sensing applications[J]. Optics Express, 2015, 23(24): 31286-31294. doi: 10.1364/OE.23.031286 [12] Taha B A, Ali N, Sapiee N M, et al. Comprehensive review tapered optical fiber configurations for sensing application: trend and challenges[J]. Biosensors, 2021, 11(8): 253. doi: 10.3390/bios11080253 [13] Deng Ming, Tang Changping, Zhu Tao, et al. Refractive index measurement using photonic crystal fiber-based Fabry-Perot interferometer[J]. Applied Optics, 2010, 49(9): 1593-1598. doi: 10.1364/AO.49.001593 [14] Zhao Yong, Xia Feng, Li Jin. Sensitivity-enhanced photonic crystal fiber refractive index sensor with two waist-broadened tapers[J]. Journal of Lightwave Technology, 2016, 34(4): 1373-1379. doi: 10.1109/JLT.2016.2519534 [15] Nguyen H H, Park J, Kang S, et al. Surface plasmon resonance: a versatile technique for biosensor applications[J]. Sensors, 2015, 15(5): 10481-10510. doi: 10.3390/s150510481 [16] Wang Qi, Wang Botao. Sensitivity enhanced SPR immunosensor based on graphene oxide and SPA co-modified photonic crystal fiber[J]. Optics & Laser Technology, 2018, 107: 210-215. [17] Zheng Wanlu, Han Bo, E Siyu, et al. Highly-sensitive and reflective glucose sensor based on optical fiber surface plasmon resonance[J]. Microchemical Journal, 2020, 157: 105010. doi: 10.1016/j.microc.2020.105010 [18] Liu Shuhui, Cao Shaoqing, Zhang Zhe, et al. Temperature sensor based on side-polished fiber SPR device coated with polymer[J]. Sensors, 2019, 19(19): 4063. doi: 10.3390/s19194063 [19] Shi Se, Wang Libing, Su Rongxiu, et al. A polydopamine-modified optical fiber SPR biosensor using electroless-plated gold films for immunoassays[J]. Biosensors and Bioelectronics, 2015, 74: 454-460. doi: 10.1016/j.bios.2015.06.080 [20] Wang Qi, Wang Xuezhou, Song Hang, et al. A dual channel self-compensation optical fiber biosensor based on coupling of surface plasmon polariton[J]. Optics & Laser Technology, 2020, 124: 106002. [21] 郑万禄, 马遥, 张亚男. 光纤表面等离子体共振葡萄糖浓度传感器研究[J]. 自动化学报, 2020, 46(x):1-5. (Zheng Wanlu, Ma Yao, Zhang Ya’nan. Research on glucose concentration sensor based on optical fiber surface plasmon resonance technology[J]. Acta Automatica Sinica, 2020, 46(x): 1-5 [22] Wang Yong, Huang Qing, Zhu Wenjie, et al. Novel optical fiber SPR temperature sensor based on MMF-PCF-MMF structure and gold-PDMS film[J]. Optics Express, 2018, 26(2): 1910-1917. doi: 10.1364/OE.26.001910 [23] Chen Zhenlin, Han Kunlin, Zhang Ya’nan. Reflective fiber surface plasmon resonance sensor for high-sensitive mercury ion detection[J]. Applied Sciences, 2019, 9(7): 1480. doi: 10.3390/app9071480 [24] Liu Ye, Wang D N, Chen W P. Crescent shaped Fabry-Perot fiber cavity for ultra-sensitive strain measurement[J]. Scientific Reports, 2016, 6(1): 38390. doi: 10.1038/srep38390 [25] Fan Jiaxuan, Li Wenyu, Liu Yuhao, et al. Fiber strain sensor based on compact in-line air cavity fabricated by conventional single mode fiber[J]. Microwave and Optical Technology Letters, 2021,doi: 10.1002/mop.33157. [26] Wu Yongfeng, Zhang Yundong, Wu Jing, et al. Temperature-insensitive fiber optic Fabry-Perot interferometer based on special air cavity for transverse load and strain measurements[J]. Optics Express, 2017, 25(8): 9443-9448. doi: 10.1364/OE.25.009443 [27] Zhao Yong, Lei Ming, Liu Shixuan, et al. Smart hydrogel-based optical fiber SPR sensor for pH measurements[J]. Sensors and Actuators B:Chemical, 2018, 261: 226-232. doi: 10.1016/j.snb.2018.01.120 [28] Chauhan M, Kumar Singh V. Review on recent experimental SPR/LSPR based fiber optic analyte sensors[J]. Optical Fiber Technology, 2021, 64: 102580. doi: 10.1016/j.yofte.2021.102580 [29] Zhang Rui, Pu Shengli, Li Xinjie. Gold-film-thickness dependent SPR refractive index and temperature sensing with hetero-core optical fiber structure[J]. Sensors, 2019, 19(19): 4345. doi: 10.3390/s19194345 [30] Suzuki H, Sugimoto M, Matsui Y, et al. Effects of gold film thickness on spectrum profile and sensitivity of a multimode-optical-fiber SPR sensor[J]. Sensors and Actuators B: Chemical, 2008, 132(1): 26-33. doi: 10.1016/j.snb.2008.01.003