留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

填充预等离子体通道靶激光电子加速研究

王子涛 周维民 邓志刚 宋尧祥

王子涛, 周维民, 邓志刚, 等. 填充预等离子体通道靶激光电子加速研究[J]. 强激光与粒子束, 2022, 34: 112001. doi: 10.11884/HPLPB202234.220067
引用本文: 王子涛, 周维民, 邓志刚, 等. 填充预等离子体通道靶激光电子加速研究[J]. 强激光与粒子束, 2022, 34: 112001. doi: 10.11884/HPLPB202234.220067
Wang Zitao, Zhou Weimin, Deng Zhigang, et al. Laser electron acceleration in pre-plasma-filled channel targets[J]. High Power Laser and Particle Beams, 2022, 34: 112001. doi: 10.11884/HPLPB202234.220067
Citation: Wang Zitao, Zhou Weimin, Deng Zhigang, et al. Laser electron acceleration in pre-plasma-filled channel targets[J]. High Power Laser and Particle Beams, 2022, 34: 112001. doi: 10.11884/HPLPB202234.220067

填充预等离子体通道靶激光电子加速研究

doi: 10.11884/HPLPB202234.220067
基金项目: 国家自然科学基金项目(11775202)
详细信息
    作者简介:

    王子涛,wzt12345@mail.ustc.edu.cn

    通讯作者:

    周维民,zhouwm@caep.cn

    邓志刚,dzgzju@163.com

  • 中图分类号: O434.12

Laser electron acceleration in pre-plasma-filled channel targets

  • 摘要: 采用紧聚焦的超强短脉冲激光与固体通道靶相互作用是获得大电量、高准直相对论电子束的一种有效方式。实验中由于激光预脉冲烧蚀靶壁产生预等离子体会膨胀、填充到真空通道中,从而导致电子束品质发生变化。采用二维PIC粒子模拟程序研究了通道靶中填充预等离子体的电子加速过程。模拟结果显示,在功率密度为5.0$ \times {10}^{20}\;{\mathrm{W}/\mathrm{c}\mathrm{m}}^{2} $的超强短脉冲激光条件下,通道中填充一定密度的等离子体时激光场优先与低密度等离子体相互作用,激光脉冲与通道壁的相互作用减弱,电子加速机制由纵向场主导的真空电子加速转变为横向电场主导的等离子体电子加速,产生电子束具有更大的电荷量,但能量降低,发散角增大。
  • 图  1  模拟示意图,激光脉冲同轴注入填充等离子体通道靶

    Figure  1.  Schematic of the channel target. Laser pulse injects coaxially to pre-plasma filled channel target

    图  2  电子数密度及电子能谱分布

    Figure  2.  Electron number density and electron spectral distribution

    图  3  电子束角分布统计

    Figure  3.  Statistics of electron beam angle distribution

    图  4  电场对电子束做功统计

    Figure  4.  Statistics of work done by the electric field on the electron beam

    图  5  电子束电荷量统计

    Figure  5.  Statistics of electron beam charge

    图  6  $ t=480\;\mathrm{f}\mathrm{s} $时刻不同填充等离子体密度下通道内电子束统计

    Figure  6.  Statistics of electron beams in the channel under different filling plasma densities at t=480 fs

  • [1] Snavely R A, Key M H, Hatchett S P, et al. Intense high-energy proton beams from petawatt-laser irradiation of solids[J]. Physical Review Letters, 2000, 85(14): 2945-2948. doi: 10.1103/PhysRevLett.85.2945
    [2] Willingale L, Mangles S P D, Nilson P M, et al. Collimated multi-MeV ion beams from high-intensity laser interactions with underdense plasma[J]. Physical Review Letters, 2006, 96: 245002. doi: 10.1103/PhysRevLett.96.245002
    [3] Roth M, Jung D, Falk K, et al. Bright laser-driven neutron source based on the relativistic transparency of solids[J]. Physical Review Letters, 2013, 110: 044802. doi: 10.1103/PhysRevLett.110.044802
    [4] Vranic M, Klimo O, Korn G, et al. Multi-GeV electron-positron beam generation from laser-electron scattering[J]. Scientific Reports, 2018, 8: 4702. doi: 10.1038/s41598-018-23126-7
    [5] Stark D J, Toncian T, Arefiev A V. Enhanced multi-MeV photon emission by a laser-driven electron beam in a self-generated magnetic field[J]. Physical Review Letters, 2016, 116: 185003. doi: 10.1103/PhysRevLett.116.185003
    [6] Huang T W, Kim C M, Zhou C T, et al. Highly efficient laser-driven Compton gamma-ray source[J]. New Journal of Physics, 2019, 21: 013008. doi: 10.1088/1367-2630/aaf8c4
    [7] Yu J Q, Hu R H, Gong Z, et al. The generation of collimated γ-ray pulse from the interaction between 10 PW laser and a narrow tube target[J]. Applied Physics Letters, 2018, 112: 204103. doi: 10.1063/1.5030942
    [8] Zhang F, Cai H B, Zhou W M, et al. Enhanced energy coupling for indirect-drive fast-ignition fusion targets[J]. Nature Physics, 2020, 16(7): 810-814. doi: 10.1038/s41567-020-0878-9
    [9] Theobald W, Solodov A A, Stoeckl C, et al. Initial cone-in-shell fast-ignition experiments on OMEGA[J]. Physics of Plasmas, 2011, 18: 056305. doi: 10.1063/1.3566082
    [10] Jarrott L C, Wei M S, McGuffey C, et al. Visualizing fast electron energy transport into laser-compressed high-density fast-ignition targets[J]. Nature Physics, 2016, 12(5): 499-504. doi: 10.1038/nphys3614
    [11] Drake R P. High-energy-density physics[J]. Physics Today, 2010, 63(6): 28-33. doi: 10.1063/1.3455249
    [12] Del Sorbo D, Feugeas J L, Nicolaï P, et al. Extension of a reduced entropic model of electron transport to magnetized nonlocal regimes of high-energy-density plasmas[J]. Laser and Particle Beams, 2016, 34(3): 412-425. doi: 10.1017/S0263034616000252
    [13] Verbeeck J, Tian H, Schattschneider P. Production and application of electron vortex beams[J]. Nature, 2010, 467(7313): 301-304. doi: 10.1038/nature09366
    [14] Arnould M, Goriely S, Takahashi K. The r-process of stellar nucleosynthesis: astrophysics and nuclear physics achievements and mysteries[J]. Physics Reports, 2007, 450(4/6): 97-213.
    [15] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 55(6): 447-449. doi: 10.1016/0030-4018(85)90151-8
    [16] Danson C, Hillier D, Hopps N, et al. Petawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 2015, 3: e3. doi: 10.1017/hpl.2014.52
    [17] Faure J, Glinec A, Pukhov A, et al. A laser-plasma accelerator producing monoenergetic electron beams[J]. Nature, 2004, 431(7008): 541-544. doi: 10.1038/nature02963
    [18] Pukhov A, Meyer-Ter-Vehn J. Laser wake field acceleration: the highly non-linear broken-wave regime[J]. Applied Physics B, 2002, 74(4/5): 355-361.
    [19] Pukhov A, Sheng Z M, Meyer-Ter-Vehn J. Particle acceleration in relativistic laser channels[J]. Physics of Plasmas, 1999, 6(7): 2847-2854. doi: 10.1063/1.873242
    [20] Tsakiris G D, Gahn C, Tripathi V K. Laser induced electron acceleration in the presence of static electric and magnetic fields in a plasma[J]. Physics of Plasmas, 2000, 7(7): 3017-3030. doi: 10.1063/1.874154
    [21] Gahn C, Tsakiris G D, Pukhov A, et al. Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels[J]. Physical Review Letters, 1999, 83(23): 4772-4775. doi: 10.1103/PhysRevLett.83.4772
    [22] Brunel F. Not-so-resonant, resonant absorption[J]. Physical Review Letters, 1987, 59(1): 52-55. doi: 10.1103/PhysRevLett.59.52
    [23] Arefiev A V, Khudik V N, Robinson A P L, et al. Beyond the ponderomotive limit: direct laser acceleration of relativistic electrons in sub-critical plasmas[J]. Physics of Plasmas, 2016, 23: 056704. doi: 10.1063/1.4946024
    [24] Wang H Y, Lin C, Sheng Z M, et al. Laser shaping of a relativistic intense, short Gaussian pulse by a plasma lens[J]. Physical Review Letters, 2011, 107: 265002. doi: 10.1103/PhysRevLett.107.265002
    [25] Hussein A E, Arefiev A V, Batson T, et al. Towards the optimisation of direct laser acceleration[J]. New Journal of Physics, 2021, 23: 023031. doi: 10.1088/1367-2630/abdf9a
    [26] Thévenet M, Leblanc A, Kahaly S, et al. Vacuum laser acceleration of relativistic electrons using plasma mirror injectors[J]. Nature Physics, 2016, 12(4): 355-360. doi: 10.1038/nphys3597
    [27] Snyder J, Ji L L, George K M, et al. Relativistic laser driven electron accelerator using micro-channel plasma targets[J]. Physics of Plasmas, 2019, 26: 033110. doi: 10.1063/1.5087409
    [28] Gong Z, Robinson A P L, Yan X Q, et al. Highly collimated electron acceleration by longitudinal laser fields in a hollow-core target[J]. Plasma Physics and Controlled Fusion, 2019, 61: 035012. doi: 10.1088/1361-6587/aaf94b
    [29] Xiao K D, Huang T W, Ju L B, et al. Energetic electron-bunch generation in a phase-locked longitudinal laser electric field[J]. Physical Review E, 2016, 93: 043207. doi: 10.1103/PhysRevE.93.043207
    [30] Ji L L, Snyder J, Pukhov A, et al. Towards manipulating relativistic laser pulses with micro-tube plasma lenses[J]. Scientific Reports, 2016, 6: 23256. doi: 10.1038/srep23256
    [31] 何武, 周维民, 张智猛, 等. 强激光与柱腔靶作用下准直高能电子束的产生[J]. 强激光与粒子束, 2015, 27:072003 doi: 10.11884/HPLPB201527.072003

    He Wu, Zhou Weimin, Zhang Zhimeng, et al. High-energy collimated electron acceleration from ultra-intense laser interaction with tube targets[J]. High Power Laser and Particle Beams, 2015, 27: 072003 doi: 10.11884/HPLPB201527.072003
    [32] 吉亮亮, 耿学松, 伍艺通, 等. 超强激光驱动的辐射反作用力效应与极化粒子加速[J]. 物理学报, 2021, 70:085203 doi: 10.7498/aps.70.20210091

    Ji Liangliang, Geng Xuesong, Wu Yitong, et al. Laser-driven radiation-reaction effect and polarized particle acceleration[J]. Acta Physica Sinica, 2021, 70: 085203 doi: 10.7498/aps.70.20210091
    [33] Gong Zheng, Mackenroth F, Wang Tao, et al. Direct laser acceleration of electrons assisted by strong laser-driven azimuthal plasma magnetic fields[J]. Physical Review E, 2020, 102: 013206. doi: 10.1103/PhysRevE.102.013206
    [34] Wang Tao, Gong Zheng, Chin K, et al. Impact of ion dynamics on laser-driven electron acceleration and gamma-ray emission in structured targets at ultra-high laser intensities[J]. Plasma Physics and Controlled Fusion, 2019, 61: 084004. doi: 10.1088/1361-6587/ab2499
    [35] Ji L L, Snyder J, Shen B F. Single-pulse laser-electron collision within a micro-channel plasma target[J]. Plasma Physics and Controlled Fusion, 2019, 61: 065019. doi: 10.1088/1361-6587/ab1692
    [36] Arber T D, Bennett K, Brady C S, et al. Contemporary particle-in-cell approach to laser-plasma modelling[J]. Plasma Physics and Controlled Fusion, 2015, 57: 113001. doi: 10.1088/0741-3335/57/11/113001
  • 加载中
图(6)
计量
  • 文章访问数:  652
  • HTML全文浏览量:  244
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-13
  • 修回日期:  2022-05-23
  • 录用日期:  2022-06-10
  • 网络出版日期:  2022-06-13
  • 刊出日期:  2022-09-20

目录

    /

    返回文章
    返回