留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于铁氧体传输线的脉冲陡化技术仿真研究

江进波 曹宇 罗正 蔡宛辰 王佳栋 程廷强

江进波, 曹宇, 罗正, 等. 基于铁氧体传输线的脉冲陡化技术仿真研究[J]. 强激光与粒子束, 2022, 34: 095005. doi: 10.11884/HPLPB202234.220092
引用本文: 江进波, 曹宇, 罗正, 等. 基于铁氧体传输线的脉冲陡化技术仿真研究[J]. 强激光与粒子束, 2022, 34: 095005. doi: 10.11884/HPLPB202234.220092
Jiang Jinbo, Cao Yu, Luo Zheng, et al. Simulation research on pulse steepening technology based on ferrite transmission line[J]. High Power Laser and Particle Beams, 2022, 34: 095005. doi: 10.11884/HPLPB202234.220092
Citation: Jiang Jinbo, Cao Yu, Luo Zheng, et al. Simulation research on pulse steepening technology based on ferrite transmission line[J]. High Power Laser and Particle Beams, 2022, 34: 095005. doi: 10.11884/HPLPB202234.220092

基于铁氧体传输线的脉冲陡化技术仿真研究

doi: 10.11884/HPLPB202234.220092
基金项目: 国家自然科学基金项目(51707105);国家重点实验室开放基金项目(SKLIPR2008)
详细信息
    作者简介:

    江进波,jinbojiang@163.com

  • 中图分类号: TM836

Simulation research on pulse steepening technology based on ferrite transmission line

  • 摘要: 铁氧体传输线的脉冲陡化技术能够实现高频高功率快前沿脉冲输出,且具有固态化和紧凑化优点,已广泛应用于高功率微波源。关于铁氧体传输线脉冲陡化特性的仿真计算缺乏较为精确的模型,因此利用COMSOL仿真软件建立了铁氧体传输线仿真模型,考虑电磁波传播与磁芯磁化进动之间的相互影响,将Maxwell方程与Landau-Lifshitz-Gilbert (LLG)方程结合进行仿真计算,与实验结果进行对比验证了仿真模型的准确性。再在此模型基础上,研究了不同传输线长度、不同电压幅值,以及不同外加偏置磁场对脉冲波形的影响。结果表明:脉冲前沿随传输线长度的增大及电压幅值的增大而减小;外加偏置磁场对脉冲前沿有影响,选择合适的外加偏置磁场可以实现最小脉冲前沿输出。
  • 图  1  铁氧体传输线陡化的宏观解释

    Figure  1.  Macroscopic explanation of the steepening of ferrite transmission line

    图  2  有阻尼的磁化进动

    Figure  2.  Damped magnetization precession

    图  3  传输线结构及电路模型示意图

    Figure  3.  Schematic diagram of transmission line structure and circuit model

    图  4  传输线二维轴对称模型图

    Figure  4.  2-D axisymmetric model diagram of transmission line

    图  5  模拟输入电压波形图

    Figure  5.  Analog input voltage waveform

    图  6  输入电压50 kV模拟与实验输出波形对比图

    Figure  6.  50 kV comparison diagram of analog and experimental output waveforms

    图  7  不同长度的仿真输出波形图

    Figure  7.  Simulation output waveforms of different lengths

    图  8  不同长度的10%~90%电压上升时间

    Figure  8.  10%~90% voltage rise time of different lengths

    图  9  不同电压的仿真输出波形

    Figure  9.  Simulated output waveforms of different voltages

    图  10  不同电压的10%~90%电压上升时间

    Figure  10.  10%~90% voltage rise time of different voltages

    图  11  不同偏置磁场的仿真输出波形图

    Figure  11.  Simulation output waveforms of different bias magnetic fields

    图  12  不同偏置磁场的10%~90%电压上升时间

    Figure  12.  10%~90% voltage rise time of different bias magnetic field

    表  1  GNLTL装置参数

    Table  1.   GNLTL device parameters

    L/mmD0/mmD1/mmD2/mm
    300101832
    下载: 导出CSV

    表  2  GNLTL材料属性

    Table  2.   GNLTL material properties

    material$\mu $$\varepsilon $
    brass11
    Ni-Zn ferrite4.814
    SF611
    下载: 导出CSV
  • [1] French D M, Hoff B W. Spatially dispersive ferrite nonlinear transmission line with axial bias[J]. IEEE Transactions on Plasma Science, 2014, 42(10): 3387-3390. doi: 10.1109/TPS.2014.2348492
    [2] Romanchenko I V, Rostov V V, Gunin A V, et al. High power microwave beam steering based on gyromagnetic nonlinear transmission lines[J]. Journal of Applied Physics, 2015, 117: 214907. doi: 10.1063/1.4922280
    [3] Reale D V, Parson J M, Neuber A A, et al. Investigation of a stripline transmission line structure for gyromagnetic nonlinear transmission line high power microwave sources[J]. Review of Scientific Instruments, 2016, 87: 034706. doi: 10.1063/1.4942246
    [4] Ulmaskulov M R, Mesyats G A, Sadykova A G, et al. Energy compression of nanosecond high-voltage pulses based on two-stage hybrid scheme[J]. Review of Scientific Instruments, 2017, 88: 045106. doi: 10.1063/1.4979641
    [5] Katayev I G. Electromagnetic shock waves[M]. London: Iliffe Books Ltd. , 1923.
    [6] Pouladian-Kari R, Benson T M, Shapland A J, et al. The electrical simulation of pulse sharpening by dynamic lines[C]//Proceedings of the 7th Pulsed Power Conference. IEEE, 1989.
    [7] Dolan J E. Simulation of shock waves in ferrite-loaded coaxial transmission lines with axial bias[J]. Journal of Physics D: Applied Physics, 1999, 32(15): 1826-1831. doi: 10.1088/0022-3727/32/15/310
    [8] 俞建国. 基于铁氧体传输线的脉冲陡化技术研究[D]. 西安: 西安电子科技大学, 2010: 9-13

    Yu Jianguo. Research of pulse sharpening based on ferrite line[D]. Xi'an: Xidian University, 2010: 9-13
    [9] 乔中兴, 刘恺, 董寅. 铁氧体同轴传输线脉冲锐化特性的研究[J]. 电工技术学报, 2015, 30(s2):21-25. (Qiao Zhongxing, Liu Kai, Dong Yin. Investigation of ferrite-filled coaxial transmission lines for pulse sharpening[J]. Transactions of China Electrotechnical Society, 2015, 30(s2): 21-25

    Qiao Zhongxing, Liu Kai, Dong Yin. Investigation of ferrite-filled coaxial transmission lines for pulse sharpening[J]. Transactions of China Electrotechnical Society, 2015, 30(s2): 21-25
    [10] 张兴家, 卢彦雷, 樊亚军, 等. 一种三传输线型亚纳秒脉冲压缩装置[J]. 强激光与粒子束, 2017, 29:115002. (Zhang Xingjia, Lu Yanlei, Fan Yajun, et al. Triple transmission line type subnanosecond pulse-compression device[J]. High Power Laser and Particle Beams, 2017, 29: 115002 doi: 10.11884/HPLPB201729.170101

    Zhang Xingjia, Lu Yanlei, Fan Yajun, et al. Triple transmission line type subnanosecond pulse-compression device[J]. High Power Laser and Particle Beams, 2017, 29: 115002 doi: 10.11884/HPLPB201729.170101
    [11] Tie Weihao, Meng Cui, Zhao Chengguang, et al. Optimized analysis of sharpening characteristics of a compact RF pulse source based on a gyro-magnetic nonlinear transmission line for ultrawideband electromagnetic pulse application[J]. Plasma Science and Technology, 2019, 21: 095503. doi: 10.1088/2058-6272/ab2626
    [12] 铁维昊, 赵程光, 孟萃, 等. 旋磁型非线性传输线调制脉冲特性数值分析[J]. 高电压技术, 2019, 45(1):301-309. (Tie Weihao, Zhao Chengguang, Meng Cui, et al. Numerical analysis on modulated RF pulse characteristics of gyro-magnetic nonlinear transmission line[J]. High Voltage Engineering, 2019, 45(1): 301-309

    Tie Weihao, Zhao Chengguang, Meng Cui, et al. Numerical analysis on modulated RF pulse characteristics of gyro-magnetic nonlinear transmission line[J]. High Voltage Engineering, 2019, 45(1): 301-309
    [13] Greco A F G, Rossi J O, Yamasaki F S, et al. 1D-FDTD simulation of microwave generation using ferrite electromagnetic shock lines[C]//Proceedings of 2020 IEEE Electrical Insulation Conference (EIC). IEEE, 2020.
    [14] 方旭, 潘亚峰, 丁臻捷, 等. 非线性铁氧体传输线的脉冲陡化作用[J]. 强激光与粒子束, 2014, 26:115006. (Fang Xu, Pan Yafeng, Ding Zhenjie, et al. Pulse sharpening effect of nonlinear ferrite-loaded transmisstion line[J]. High Power Laser and Particle Beams, 2014, 26: 115006 doi: 10.11884/HPLPB201426.115006

    Fang Xu, Pan Yafeng, Ding Zhenjie, et al. Pulse sharpening effect of nonlinear ferrite-loaded transmisstion line[J]. High Power Laser and Particle Beams, 2014, 26: 115006 doi: 10.11884/HPLPB201426.115006
    [15] 胡月川. 铁磁纳米管中的磁化强度动力学[D]. 天津: 河北工业大学, 2016: 3-9

    Hu Yuechuan. The magnetization dynamics in magnetic nanotubes[D]. Tianjin: Hebei University of Technology, 2016: 3-9
    [16] 宛德福, 马兴隆. 磁性物理学[M]. 成都: 电子科技大学出版社, 1994: 437-441

    Wan Defu, Ma Xinglong. Magnetic physics[M]. Chengdu: University of Electronic Science and Technology of China Press, 1994: 437-441
    [17] Gilbert T L. A phenomenological theory of damping in ferromagnetic materials[J]. IEEE Transactions on Magnetics, 2004, 40(6): 3443-3449. doi: 10.1109/TMAG.2004.836740
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  622
  • HTML全文浏览量:  216
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-30
  • 修回日期:  2022-05-26
  • 网络出版日期:  2022-06-08
  • 刊出日期:  2022-06-17

目录

    /

    返回文章
    返回