留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双模瑞利-泰勒不稳定性的预热烧蚀效应研究

旷圆圆 卢艳

旷圆圆, 卢艳. 双模瑞利-泰勒不稳定性的预热烧蚀效应研究[J]. 强激光与粒子束, 2022, 34: 082203. doi: 10.11884/HPLPB202234.220133
引用本文: 旷圆圆, 卢艳. 双模瑞利-泰勒不稳定性的预热烧蚀效应研究[J]. 强激光与粒子束, 2022, 34: 082203. doi: 10.11884/HPLPB202234.220133
Kuang Yuanyuan, Lu Yan. Study on preheating ablative effects of two-mode Rayleigh-Taylor instability[J]. High Power Laser and Particle Beams, 2022, 34: 082203. doi: 10.11884/HPLPB202234.220133
Citation: Kuang Yuanyuan, Lu Yan. Study on preheating ablative effects of two-mode Rayleigh-Taylor instability[J]. High Power Laser and Particle Beams, 2022, 34: 082203. doi: 10.11884/HPLPB202234.220133

双模瑞利-泰勒不稳定性的预热烧蚀效应研究

doi: 10.11884/HPLPB202234.220133
基金项目: 国家自然科学基金项目(11805003)
详细信息
    作者简介:

    旷圆圆,kuangyy@stu.ahu.edu.cn

    通讯作者:

    卢 艳,luyan2003@ahu.edu.cn

  • 中图分类号: O532+.13

Study on preheating ablative effects of two-mode Rayleigh-Taylor instability

  • 摘要: 针对双模扰动下的烧蚀瑞利-泰勒不稳定性增长问题,采用高精度的数值计算方法,研究了不同预热程度下模耦合产生的多个高次谐波幅值的发展和演化问题。研究表明,三种预热烧蚀条件下,当扰动基模满足长波与短波耦合方式时,谐波中的长波模态占主导,而短波模发展明显受到抑制;当满足短波与短波耦合时,耦合结果带来了许多新的增长较快的长波模态,此时短波模增长呈现小幅震荡形式。比较两种耦合方式可以发现,长波结构在烧蚀瑞利-泰勒不稳定性弱非线性阶段都占主导地位,尤其是短波与短波耦合中气泡与尖钉表现出不同于两个基模的长波模结构。进一步分析预热效应对模耦合增长的影响,发现预热程度越强就越能削弱耦合谐波的增长,这说明预热对烧蚀瑞利-泰勒不稳定性具有致稳作用,这对惯性约束聚变工程中控制烧蚀瑞利-泰勒不稳定性发展具有重要意义。
  • 当轻流体加速重流体时,流体交界面处会发生瑞利-泰勒不稳定性(RTI)[1-4]。惯性约束聚变(ICF)[5-8]内爆过程中,靶丸外表面高温高压低密度等离子体加速压缩内层高密度流体时,流体交界面会发生烧蚀瑞利-泰勒不稳定性(ARTI)[9-12],并且由于激光强度分布不均、靶丸表面粗糙程度等因素,ARTI的发展会被进一步放大,从而破坏内爆壳层的对称性,导致靶丸[5]破裂,甚至影响点火热斑的形成。因此,ARTI的研究对聚变靶的内爆压缩及点火烧蚀具有重要意义。通常利用数值模拟方法研究ARTI,首先在无扰动下对一维流场进行稳定性分析,得到一个加速度基本保持不变的平衡流场,然后在烧蚀面处引入物理量的小扰动,追踪流场发展获得进一步的不稳定性分析。以往的单模扰动[13-18]研究表明,ARTI的演化大致可以分为线性阶段与非线性阶段,其增长会受到烧蚀面附近物质的对流[7]、烧蚀面密度梯度[6]和预热[19-21]等因素的影响,其中密度梯度效应对ARTI的线性增长和非线性阶段模耦合发展具有显著影响[22]

    由于引起界面小扰动的因素很多,因此在烧蚀面附近可能引发多模扰动,从而激发许多新的谐波[23-25],这些耦合谐波会进一步影响ARTI的增长。本文研究的主要内容是双模扰动下带有预热的ARTI发展问题,这里的预热是指较低能的电子预热,所以能量是沉积在烧蚀面附近,因此如果预热程度越高,意味着烧蚀面密度梯度越大,烧蚀面宽则烧蚀程度强。由于预热会引起烧蚀面宽度(密度梯度效应)变化,数值模拟中设置强、中等和弱三种不同预热条件,通过一维稳定性分析,首先得到三种不同预热条件下的稳态流场,并在此基础上引入波长不同的两个速度扰动[26]。研究中将数值模拟分为两组:第一组是长波与短波分别在强、中和弱三种预热条件下的耦合;第二组是短波与短波分别在强、中和弱三种预热条件下的耦合。通过数值计算给出高次谐波幅值随时间演化的曲线和ARTI演化一段时间后的气泡尖钉结构图,比较分析两种不同耦合方式下预热强度对谐波演化的影响可以发现,随着预热强度的增大,谐波增长趋势变缓。

    我们采用的物理模型为200μm厚的CH平面靶,初始密度为1g/cm3,激光功率线性上升至4 ns后达到峰值强度1014W/cm3然后维持峰值不变,临界密度为0.03g/cm3。将等离子体视为理想气体,考虑电子热传导,守恒型控制方程如下[27]

    ρt+ρv=0
    (1)
    (ρv)t+(ρvv)+p=0
    (2)
    t(12ρvv+ε)+[(12ρvv+ε+p)v]=(κT)+S
    (3)

    式中:ρvTε=cvρT分别为密度、速度、温度和内能,其中cv=Γ/(γh1)是定容比热,γh=5/3是CH材料中气体绝热指数;κ为电子热传导系数;S为激光能量。

    对于电子热传导,我们采用的模型为

    κ=κSHf(T)h
    (4)

    其中κSH=kST5/2为经典电子热传导系数,h取1,f(T)=c/T3/2+b/T+1为预热函数[19]。数值模拟中可以通过改变bc的值来改变预热程度。我们选取强预热(strong preheating,SP)、中等预热(moderate preheating,MP)和弱预热(weak preheating,WP)所对应的bc的值,如表1所示[28-30]

    表  1  三种预热条件的参数设置
    Table  1.  Parameter settings of strong, medium and weak preheating conditions
    casebc
    strong preheating (SP)8.61.6
    moderate preheating (MP)20.4
    weak preheating (WP)0.860.24
    下载: 导出CSV 
    | 显示表格

    一维计算到8 ns左右,烧蚀面附近流场加速度基本保持不变,达到稳态。8 ns时三种预热情况下的一维平衡流场如图1所示。以最小密度梯度定标长度Lm=min[|ρ(dρ/dx)1|]来表征烧蚀面的宽度,SP,MP和WP三种情况下的一维平衡流场对应的Lm分别为1.830.410.23μm,这表明三种模型中,预热程度越大,烧蚀面越宽。

    图  1  不同预热情况下的一维平衡流场的密度、速度和温度分布
    Figure  1.  Density, velocity and temperature distribution of one-dimensional equilibrium flow field under different preheating conditions

    设一维平衡流场以加速度g作匀加速运动,在加速运动的非惯性系坐标系下,二维形式的控制方程可以写为

    ρt+ρux+ρvy=0
    (5)
    ρut+(ρu2+p)x+ρuvx=ρg
    (6)
    ρvt+ρuvx+(ρv2+p)y=0
    (7)
    ρεt+(ρε+p)ux+(ρε+p)vy=xκTx+y(κTy)+ρug
    (8)

    式中:ux方向速度;vy方向速度。该物理模型中烧蚀面距离激光吸收位置(临界密度附近)较远,因此可以忽略激光能量项S,能量靠电子热传导传输。引入一个初始速度扰动

    u=iuicos(kiy+ϕi)exp(ki|xx0|)
    (9)
    v=ivisin(kiy+ϕi)exp(ki|xx0|)
    (10)

    其中ki=2π/λ表示波数,ϕi表示相位,本文不考虑相位变化,即ϕi=0。通过数值计算得到各个波长下对应的线性扰动增长率如图2所示,WP情况下线性增长率最大,MP次之,SP最小。WP,MP和SP情况下对应的截止波长分别为λWP=4μmλMP=4.2μmλSP=5μm,这表明随着预热增强,截止波长在变大。三种预热情况下,扰动波长λ=18μm左右具有最大线性增长率。

    图  2  强、中和弱预热情况下的线性增长率
    Figure  2.  Linear growth rate under strong, medium and weak preheating

    接下来为了研究预热烧蚀效应对不同模耦合发展的影响,我们计算两组对比数值模拟。第一组扰动选在截止波长附近λ1=10μm的短波与远离截止波长λ2=40μm的长波,第二组在截止波长附近λ1=10μmλ2=12μm的两个短波。不同波长初始幅值相同,为满足扰动周期性特点,y方向计算域为120μm

    随着不稳定性的增长进入弱非线性阶段,两个初始扰动模的相互作用开始变得明显,将产生和频谐波与差频谐波及介于两者之间的其他谐波[31]

    长波与短波耦合所得到谐波幅值η随时间的演化如图3所示。图3(a)为SP情况,图3(b)为MP情况,图3(c)为WP情况。比较发现,在三种预热条件下都产生了波长为40μm20μm的幅值涨幅较大的长波模,以及波长为1310μm的幅值涨幅较小的短波模。在5 ns左右,SP情况下长波模幅值迅速增长,短波模幅值增长被抑制,随后长波模一直占据上风,到7.5 ns左右,40μm20μm的长波模幅值达到第一个极值点30μm左右,随后开始以震荡形式衰减,短波模幅值同时震荡衰减。在MP与WP情况下,5 ns左右长波模迅速增长,短波模幅值增长被抑制,长波模一直占据上风,到7.5 ns左右40μm长波模幅值达到30μm左右,而20μm的长波模幅值达到了70μm左右,随后长波模与短波模开始迅速衰减。这表明长波与短波耦合情况,在三种不同预热程度下,长波模在弱非线性阶段占主导地位,而短波模受到抑制。在预热程度相对较少的MP与WP情况下,20μm的长波模幅值达到的峰值要高很多,这表明预热可以抑制谐波的增长。

    图  3  不同预热情况下λ1=10μmλ2=40μm双模扰动所激发的谐波的密度幅值随时间的演化
    Figure  3.  Temporal evolution of the density amplitude of harmonics excited by the coupling of two modes (short-and long-wavelength λ1=10μm and λ2=40μm) in different preheating cases

    我们给出了波长为λ1=10μmλ2=40μm的扰动下t=7.5 ns时的密度等值线,如图4所示。图4(a)为SP情况,图4(b)为MP情况,图4(c)为WP情况。可以看到此时气泡展现出两种不同的波长的结构,其波长大致为40μm20μm,这是因为模耦合产生的和频与差频谐波(8μm13μm,前者增长不明显,文中没有给出其增长曲线)都为短波,耦合谐波的增长不大,演化中主要增长的模式为基模中的长波模(40μm)以及其二次谐波(20μm)。随着预热程度减小,这两种结构更加明显。这进一步说明在长波与短波的耦合情况下,长波结构占主导地位,且预热程度越高,气泡尖钉增长越慢。

    图  4  不同预热情况下λ1=10μmλ2=40μm双模扰动下在t=7.5 ns时的密度等值线
    Figure  4.  Density contours for λ1=10μm and λ2=40μm mode coupling under different preheating at t=7.5 ns

    短波与短波耦合所得到谐波幅值随时间的演化如图5所示。图5(a)为SP情况,图5(b)为MP情况,图5(c)为WP情况。在三种预热条件下都产生了波长为60302015μm的长波模,以及波长为12μm10μm的幅值涨幅较小的短波模。在SP情况下,5.5 ns左右波长为60μm30μm的长波模的幅值迅速增长,短波模的幅值出现震荡,长波模一直占据上风,随后在8 ns左右,波长为60μm的长波模达到峰值,波长为30μm的长波模继续增长。在MP与WP情况下,5 ns左右波长为60μm30μm的长波模迅速增长,长波模同样占据上风,而短波的幅值在整个过程中都处于小幅值震荡状态。MP和WP情况下,长波模幅值达到的最大幅值的时间比SP情况要早5 ns左右。这表明在短波与短波耦合中,会激发原本基模扰动中没有的长波模(该模态的波长满足两个短波波长的最小公倍数值),并且在弱非线性阶段长波模占据主导,在预热较多的SP情况下,弱非线性阶段谐波幅值达到峰值的时间要更长。

    图  5  不同预热情况下λ1=10μmλ2=12μm双模扰动所激发的谐波的密度幅值随时间的演化
    Figure  5.  Temporal evolution of the density amplitude of harmonics excited by the coupling of two short-wavelength modes (λ1=10μm and λ2=12μm) in different preheating cases

    波长为λ1=10μmλ2=12μm的扰动下,t =7.5 ns时的密度等值线如图6所示。图6(a)为SP情况,图6(b)为MP情况,图6(c)为WP情况。此时气泡展现出多种不同的波长的结构,其中最为明显的是大约60μm30μm的长波结构。在MP和WP情况下,60μm的伞状尖钉结构更加明显。这也进一步说明了在短波与短波的耦合情况下,依然是长波结构占主导地位,且预热程度越小,气泡尖钉增长越快。

    图  6  不同预热情况下λ1=10μmλ2=12μm双模扰动下在t=7.5 ns时的密度等值线
    Figure  6.  Density contours for λ1=10μm and λ2=12μm mode coupling under different preheating at t=7.5 ns

    本文采用数值求解流体方程的方法研究了不同预热条件下的双模扰动烧蚀-瑞利泰勒不稳定性的演化规律。通过一维稳态分析得到了强、中等和弱预热条件下的平衡流场,并在此基础上引入两个速度扰动,获得了双模耦合谐波幅值随时间的演化。在三种预热条件下,不论是长波与短波耦合还是短波与短波耦合,都会激发出许多新的高次谐波,并且谐波中的长波总是占主导。在我们设置的预热程度范围内,预热程度越大,长波结构增长越缓慢,这表明预热会抑制双模耦合高次谐波的增长,对烧蚀瑞利-泰勒不稳定性具有一定的致稳作用。

  • 图  1  不同预热情况下的一维平衡流场的密度、速度和温度分布

    Figure  1.  Density, velocity and temperature distribution of one-dimensional equilibrium flow field under different preheating conditions

    图  2  强、中和弱预热情况下的线性增长率

    Figure  2.  Linear growth rate under strong, medium and weak preheating

    图  3  不同预热情况下λ1=10μmλ2=40μm双模扰动所激发的谐波的密度幅值随时间的演化

    Figure  3.  Temporal evolution of the density amplitude of harmonics excited by the coupling of two modes (short-and long-wavelength λ1=10μm and λ2=40μm) in different preheating cases

    图  4  不同预热情况下λ1=10μmλ2=40μm双模扰动下在t=7.5 ns时的密度等值线

    Figure  4.  Density contours for λ1=10μm and λ2=40μm mode coupling under different preheating at t=7.5 ns

    图  5  不同预热情况下λ1=10μmλ2=12μm双模扰动所激发的谐波的密度幅值随时间的演化

    Figure  5.  Temporal evolution of the density amplitude of harmonics excited by the coupling of two short-wavelength modes (λ1=10μm and λ2=12μm) in different preheating cases

    图  6  不同预热情况下λ1=10μmλ2=12μm双模扰动下在t=7.5 ns时的密度等值线

    Figure  6.  Density contours for λ1=10μm and λ2=12μm mode coupling under different preheating at t=7.5 ns

    表  1  三种预热条件的参数设置

    Table  1.   Parameter settings of strong, medium and weak preheating conditions

    casebc
    strong preheating (SP)8.61.6
    moderate preheating (MP)20.4
    weak preheating (WP)0.860.24
    下载: 导出CSV
  • [1] Taylor G I. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1950, 201(1065): 192-196.
    [2] Strutt J W. ART. 100—Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density[M]//Strutt J W. Scientific Papers. Cambridge: Cambridge University Press, 1900: 200-207.
    [3] Sharp D H. An overview of Rayleigh-Taylor instability[J]. Physica D: Nonlinear Phenomena, 1984, 12(1/3): 3-18.
    [4] Bodner S E. Rayleigh-Taylor instability and laser-pellet fusion[J]. Physical Review Letters, 1974, 33(13): 761-764. doi: 10.1103/PhysRevLett.33.761
    [5] Nuckolls J, Wood L, Thiessen A, et al. Laser compression of matter to super-high densities: thermonuclear (CTR) application[J]. Nature, 1972, 239(5368): 139-142. doi: 10.1038/239139a0
    [6] Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Physics of Plasmas, 1995, 2(11): 3933-4024. doi: 10.1063/1.871025
    [7] Takabe H, Mima K, Montierth L, et al. Self-consistent growth rate of the Rayleigh-Taylor instability in an ablatively accelerating plasma[J]. Physics of Fluids, 1985, 28(12): 3676. doi: 10.1063/1.865099
    [8] Sanz J. Self-consistent analytical model of the Rayleigh-Taylor instability in inertial confinement fusion[J]. Physical Review E, 1996, 53(4): 4026-4045. doi: 10.1103/PhysRevE.53.4026
    [9] Roberts M S, Jacobs J W. The effects of forced small-wavelength, finite-bandwidth initial perturbations and miscibility on the turbulent Rayleigh-Taylor instability[J]. Journal of Fluid Mechanics, 2016, 787: 50-83. doi: 10.1017/jfm.2015.599
    [10] Zhang H, Betti R, Gopalaswamy V, et al. Nonlinear excitation of the ablative Rayleigh-Taylor instability for all wave numbers[J]. Physical Review E, 2018, 97: 011203. doi: 10.1103/PhysRevE.97.011203
    [11] Zhao Kaige, Xue Chuang, Wang Lifeng, et al. Two-dimensional thin shell model for the nonlinear Rayleigh-Taylor instability in spherical geometry[J]. Physics of Plasmas, 2019, 26: 022710. doi: 10.1063/1.5079316
    [12] Qiao Xiumei, Lan Ke. Novel target designs to mitigate hydrodynamic instabilities growth in inertial confinement fusion[J]. Physical Review Letters, 2021, 126: 185001. doi: 10.1103/PhysRevLett.126.185001
    [13] Bud’ko A B, Liberman M A. Stabilization of the Rayleigh-Taylor instability by convection in smooth density gradient: Wentzel-Kramers-Brillouin analysis[J]. Physics of Fluids B: Plasma Physics, 1992, 4(11): 3499-3506. doi: 10.1063/1.860357
    [14] Betti R, Goncharov V N, McCrory R L, et al. Growth rates of the ablative Rayleigh–Taylor instability in inertial confinement fusion[J]. Physics of Plasmas, 1998, 5(5): 1446-1454. doi: 10.1063/1.872802
    [15] Lewis D J. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. II[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1950, 202(1068): 81-96.
    [16] Birkhoff G. Taylor instability and laminar mixing[R]. Los Alamos: Las Alamos Scientific Lab. , 1954.
    [17] Birkhoff G, Bellman R, Lin C C. Hydrodynamic instability[M]. New York: Am. Math. Soc. , 1962: 55-76.
    [18] 张维岩, 叶文华, 吴俊峰, 等. 激光间接驱动聚变内爆流体不稳定性研究[J]. 中国科学:物理学 力学 天文学, 2014, 44(1):1-23. (Zhang Weiyan, Ye Wenhua, Wu Junfeng, et al. Hydrodynamic instabilities of laser indirect-drive inertial-confinement-fusion implosion[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2014, 44(1): 1-23

    Zhang Weiyan, Ye Wenhua, Wu Junfeng, et al. Hydrodynamic instabilities of laser indirect-drive inertial-confinement-fusion implosion[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2014, 44(1): 1-23
    [19] Ye Wenhua, Zhang Weiyan, He Xiantu. Stabilization of ablative Rayleigh-Taylor instability due to change of the Atwood number[J]. Physical Review E, 2002, 65: 057401. doi: 10.1103/PhysRevE.65.057401
    [20] 叶文华, 张维岩, 贺贤土. 烧蚀瑞利-泰勒不稳定性线性增长率的预热致稳公式[J]. 物理学报, 2000, 49(4):762-767. (Ye Wenhua, Zhang Weiyan, He Xiantu. Preheating stabilization formula of linear growth rate for ablative Rayleigh-Taylor instability[J]. Acta Physical Sinica, 2000, 49(4): 762-767 doi: 10.3321/j.issn:1000-3290.2000.04.032

    Ye Wenhua, Zhang Weiyan, He Xiantu. Preheating stabilization formula of linear growth rate for ablative Rayleigh-Taylor instability[J]. Acta Physical Sinica, 2000, 49(4): 762-767 doi: 10.3321/j.issn:1000-3290.2000.04.032
    [21] Xia Hua, Shats M G. Spectral energy transfer and generation of turbulent structures in toroidal plasma[J]. Physics of Plasmas, 2004, 11(2): 561-571. doi: 10.1063/1.1637607
    [22] Wang Lifeng, Ye Wenhua, Li Yingjun. Interface width effect on the classical Rayleigh–Taylor instability in the weakly nonlinear regime[J]. Physics of Plasmas, 2010, 17: 052305. doi: 10.1063/1.3396369
    [23] Garnier J, Raviart P A, Cherfils-Clérouin C, et al. Weakly nonlinear theory for the ablative Rayleigh-Taylor instability[J]. Physical Review Letters, 2003, 90: 185003. doi: 10.1103/PhysRevLett.90.185003
    [24] Verdon C P, McCrory R L, Morse R L, et al. Nonlinear effects of multifrequency hydrodynamic instabilities on ablatively accelerated thin shells[J]. Physics of Fluids, 1982, 25(9): 1653-1674. doi: 10.1063/1.863925
    [25] Dahlburg J P, Gardner J H. Ablative Rayleigh-Taylor instability in three dimensions[J]. Physical Review A, 1990, 41(10): 5695-5698. doi: 10.1103/PhysRevA.41.5695
    [26] Xin Jingfei, Yan Rui, Wan Zhenhua, et al. Two mode coupling of the ablative Rayleigh-Taylor instabilities[J]. Physics of Plasmas, 2019, 26: 032703. doi: 10.1063/1.5070103
    [27] Hasegawa S, Nishihara K. Mode coupling theory in ablative Rayleigh-Taylor instability[J]. Physics of Plasmas, 1995, 2(12): 4606-4616. doi: 10.1063/1.870950
    [28] Ye Wenhua, Wang Lifeng, He Xiantu. Spike deceleration and bubble acceleration in the ablative Rayleigh-Taylor instability[J]. Physics of Plasmas, 2010, 17: 122704. doi: 10.1063/1.3497006
    [29] Fan Zhengfeng, Luo Jisheng, Ye Wenhua. Compressible Rayleigh-Taylor instability with preheat in inertial confinement fusion[J]. Chinese Physics Letters, 2007, 24(8): 2308-2311. doi: 10.1088/0256-307X/24/8/042
    [30] Wang Lifeng, Ye Wenhua, He Xiantu. Density gradient effects in weakly nonlinear ablative Rayleigh-Taylor instability[J]. Physics of Plasmas, 2012, 19: 012706. doi: 10.1063/1.3677821
    [31] 王立锋, 叶文华, 陈竹, 等. 激光聚变内爆流体不稳定性基础问题研究进展[J]. 强激光与粒子束, 2021, 33:012001. (Wang Lifeng, Ye Wenhua, Chen Zhu, et al. Review of hydrodynamic instabilities in inertial confinement fusion implosions[J]. High Power Laser and Particle Beams, 2021, 33: 012001 doi: 10.11884/HPLPB202132.200173

    Wang Lifeng, Ye Wenhua, Chen Zhu, et al. Review of hydrodynamic instabilities in inertial confinement fusion implosions[J]. High Power Laser and Particle Beams, 2021, 33: 012001 doi: 10.11884/HPLPB202132.200173
  • 期刊类型引用(1)

    1. 涂绍勇,蒋炜,尹传盛,于承新,范征锋,袁永腾,蒲昱东,缪文勇,胡昕,李晋,杨轶濛,车兴森,董云松,杨冬,杨家敏. 激光间接驱动柱几何内界面减速段的流体力学不稳定性实验研究. 强激光与粒子束. 2024(12): 26-32 . 本站查看

    其他类型引用(0)

  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  760
  • HTML全文浏览量:  255
  • PDF下载量:  42
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-04-25
  • 修回日期:  2022-05-12
  • 网络出版日期:  2022-05-18
  • 刊出日期:  2022-07-20

目录

/

返回文章
返回