Development of power supply for EAST fishtail divertor
-
摘要: 为了满足复杂多变的电磁环境对正弦电流精度和变频调幅稳定输出的要求,提出了LC串联谐振理论与高频PWM调制技术相结合的设计思想。研制了一种多频点(10~3800 Hz)、电流高达8000 A的正弦波电源。FTD电源采用直流开关电源技术、SPWM调制技术和LC串联谐振理论。输出电流工作点包括10 Hz@8000 A、20 Hz@6000 A、30~110 Hz@5000 A和1.3~3.8 kHz@2400 A。采用电流反馈和频率反馈控制策略,输出电流精度可达5%。测试结果表明,FTD电源能够满足系统要求,实现了对偏滤器偏转磁场的强度和频率的调节,为偏滤器靶板的粒子热沉积效果的对比实验提供了支持。Abstract: Fishtail Divertor (FTD), a new divertor concept, is a significant research object of EAST tokamak divertor system. To meet the requirements of sinusoidal current precision and variable frequency, the combination of Inductance and Capacitance (LC) series resonance theory and high-frequency Pulse Width Modulation (PWM) technology is put forward. A sine wave power supply with multi frequency points (10-3800 Hz) and current up to 8000 A is developed. The FTD power supply adopts DC switching power technology, Sinusoidal Pulse Width Modulation (SPWM) technology and LC series resonance theory. The operating points of output current include 10 Hz at 8000 A, 20 Hz at 6000 A, 30 to 110 Hz at 5000 A and 1300 Hz to 3800 Hz at 2400 A. The output current accuracy can reach 5% by the current feedback and frequency feedback control strategy. The test results demonstrate that the FTD power supply can meet the system requirements, and it can provide reference for the design of other divertor power supply.
-
Key words:
- magnet coil power supply /
- fishtail divertor /
- series resonance /
- EAST /
- sine wave power supply
-
表 1 FTD电源的主要技术参数.
Table 1. Main requirements of FTD power supply
rated voltage/V current mode current frequency/Hz current amplitude/A current accuracy ±3500 AC sinusoidal 10 8000 ≤5% ±3500 AC sinusoidal 20 6000 ≤5% ±3500 AC sinusoidal 30~110 5000 ≤5% ±3500 AC sinusoidal 1300 2400 ≤5% ±3500 AC sinusoidal 1800 1800 ≤5% ±3500 AC sinusoidal 2500 1500 ≤5% ±3500 AC sinusoidal 3200 1400 ≤5% ±3500 AC sinusoidal 3800 1200 ≤5% -
[1] Chankin A V. JET装置上偏滤器功率的红外测量[J]. 李锐, 译. 国外核聚变与等离子体应用, 1995(4):33-39Chankin A V. Infrared measurement of divertor power on JET device[J]. Li Rui, trans. Nuclear Fusion and Plasma Applications Abroad, 1995(4): 33-39 [2] 姚达毛. EAST超导托卡马克偏滤器工程研究[D]. 合肥: 中国科学院等离子体物理研究所, 2005: 31-46Yao Damao. Engineering study on diverter of EAST superconducting tokamak[D]. Hefei: Institute of Plasma Physics, Chinese Academy of Sciences, 2005: 31-46 [3] Field A R, Fussmann G, Garcia-Rosales C, et al. Studies of divertor target plate erosion in the ASDEX-Upgrade tokamak[J]. Journal of Nuclear Materials, 1995, 220-222: 553-557. doi: 10.1016/0022-3115(94)00538-9 [4] Ambrosino G, Ariola M, Tommasi G D, et al. Plasma strike-point sweeping on JET Tokamak with the eXtreme shape controller[J]. IEEE Transactions on Plasma Science, 2008, 36(3): 834-840. doi: 10.1109/TPS.2008.922920 [5] Zhang Bin, Firdaouss M, Gong Xianzu, et al. Study of power load pattern on EAST divertor using PFCFlux code[J]. Fusion Engineering and Design, 2016, 107: 58-63. doi: 10.1016/j.fusengdes.2016.04.001 [6] Khripunov B I, Koidan V S, Ryazanov A I, et al. Impact of deuterium plasma flux on fusion reactor materials: radiation damage, surface modification, erosion[J]. Physics of Atomic Nuclei, 2021, 84(7): 1252-1258. doi: 10.1134/S1063778821070048 [7] Zhang Xiaodong, Huang Yiyun, Yao Damao, et al. Design of fishtail divetor for heat load control during long-pulse operation on EAST tokamak[C]//APS Division of Plasma Physics Meeting. 2017. [8] 谢韩, 宋云涛, 姚达毛. EAST超导托卡马克偏滤器水冷结构设计[J]. 核聚变与等离子体物理, 2009, 29(4):331-334 doi: 10.3969/j.issn.0254-6086.2009.04.009Xie Han, Song Yuntao, Yao Damao. Design of divertor cooling structure for EAST superconducting tokamak[J]. Nuclear Fusion and Plasma Physics, 2009, 29(4): 331-334 doi: 10.3969/j.issn.0254-6086.2009.04.009 [9] 史博, 张斌, 张辉, 等. EAST装置H模放电中上偏滤器温度分布研究[J]. 核科学与技术, 2020, 8(2):61-68 doi: 10.12677/NST.2020.82007Shi Bo, Zhang Bin, Zhang Hui, et al. Study on temperature distribution of the upper divertor in H-Mode discharges of EAST[J]. Nuclear Science and Technology, 2020, 8(2): 61-68 doi: 10.12677/NST.2020.82007 [10] Mccracken G M, Pedgley J M. Estimates of the maximum radiate power in a tokamak divertor[J]. Plasma Physics and Controlled Fusion, 1993, 35(2): 253-262. doi: 10.1088/0741-3335/35/2/010 [11] Zhang Cheng, Shao Tao, Xu Jiayu, et al. A gliding discharge in open air sustained by high-voltage resonant AC power supply[J]. IEEE Transactions on Plasma Science, 2012, 40(11): 2843-2849. doi: 10.1109/TPS.2012.2208470 [12] Zhou Yu, Huang Yiyun, Guo Fei, et al. Research on resonant frequency feedback control strategy of EAST fishtail divertor magnet coil power supply[C]//2019 IEEE 3rd International Electrical and Energy Conference (CIEEC). 2019.