Simulation of gas purging process in the slab cassette of a large-aperture slab amplifier
-
摘要: 为更快速地置换片状放大器片箱内部的气体、带走片箱内部因氙灯辐照产生的μm级气溶胶颗粒,以延长钕玻璃增益介质使用寿命,提出了几种不同的片箱隔板气体流道设计并对其吹扫效果进行对比。基于计算流体力学手段和分散相模型,求解了片箱腔内的吹扫流场并模拟了微米级粒子污染物的吹扫过程。片箱隔板采用开孔设计,通过对比分析发现,不同开孔孔径和排列方式的片箱吹扫效果差异明显。当开孔孔径为ϕ14 mm、且上下隔板都采用整齐排列的圆形通孔时,片箱内的气体压力损失更小(424.3 Pa)且吹扫达到百级的时间更短(205 s)。最后片箱吹扫实验显示了采用该结构的片箱其腔内吹扫达到百级的时间为2~3 min。Abstract: To replace the gas in the slab cassette of slab amplifier more quickly, thus to transport micro aerosol particles produced by xenon lamp irradiation, and prolong the operating life Nd:glass, this paper proposes several different designs of gas flow channel on the baffle of slab cassette and compares their purging effects. Based on computational fluid dynamics (CFD) and dispersed phase model (DPM), the purge flow field in the chamber was obtained, and the purging process of micro contaminant particles was simulated. Through comparative analysis, it is found that the time required to achieve a cleanliness of 100 class is significantly different for different apertures and arrangements of the holes. When the hole diameter is 14 mm, and the holes on the upper and lower baffles are orderly round through-holes, the purging time to achieve 100 class is 205 s, and the gas pressure loss in the cassette is 424.3 Pa. Finally, gas purging experiments of a 4×2 combined slab amplifier show that a purging time of 2−3 min is needed to achieve 100-class cleanliness by the optimized design.
-
Key words:
- high-power solid-state laser device /
- slab amplifier /
- gas purge /
- gas channel /
- numerical simulation
-
表 1 隔板开孔方式计算模拟条件及结果
Table 1. Calculation conditions and results of different holes opening ways
Case inlet
pressure/Painlet
velocity/(m/s)outlet
pressure/Padifferential
pressure/Patime
spent/snotes Case1 103325.8 15.0 102863 462 248 type 1, 16 slot holes with a seam Case2 103325.8 15.0 102845.6 480.2 223 type 2, 16 slot holes with a seam, “V” type Case3 103325.8 15.0 102929 396.8 422 type 3, 20 mm through holes (top and bottom) Case4 103325.8 15.0 102927.8 398 268 type 3, 20 mm holes, through (top), staggered (bottom) Case5 103325.5 15.0 102709.4 616.1 205 type 1, 16 slot holes with a wider seam Case6 103325.5 15.0 102620 705.5 365 type 1, 16 slot holes with a narrower seam Case7 103325.5 15.0 102955.2 370.3 425 type 4, 20 mm through holes (top and bottom) Case8 103325.5 15.0 102957.8 367.7 405 type 4, 20 mm holes, through (top), staggered (bottom) Case9 103325.5 15.0 102901.2 424.3 205 type 4, 14 mm through holes (top and bottom) Case10 103325.8 15.0 102853.1 472.7 247 type 4, 14 mm holes, through (top), staggered (bottom) -
[1] Burnham A K, Horvath J A, Letts S A, et al. Achieving and maintaining cleanliness in NIF amplifiers[C]//Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion. 1998: 609-620. [2] Honig J. Cleanliness improvements of National Ignition Facility amplifiers as compared to previous large-scale lasers[J]. Optical Engineering, 2004, 43(12): 2904-2911. doi: 10.1117/1.1815320 [3] Glass A J, Guenther A H. Laser induced damage of optical elements–a status report[J]. Applied Optics, 1973, 12(4): 637-649. doi: 10.1364/AO.12.000637 [4] 於海武, 郑万国, 唐军, 等. 高功率激光放大器片腔洁净度实验研究[J]. 强激光与粒子束, 2001, 13(3):272-276Yu Haiwu, Zheng Wangguo, Tang Jun, et al. Investigation of slab cavity cleanliness of high power laser amplifiers[J]. High Power Laser and Particle Beams, 2001, 13(3): 272-276 [5] Honig J. Offline slab damage experiments comparing air and nitrogen purge[R]. NIF-0070328, 2001: 22-29. [6] Honig J, Ravizza D. Nova retrospective and possible implications for NIF[R]. NIF-0110227, 1999. [7] 景峰, 彭志涛, 朱启华, 等. 高功率固体激光驱动器的优化设计[J]. 强激光与粒子束, 2000, 12(s1):117-121Jing Feng, Peng Zhitao, Zhu Qihua, et al. Design optimization of high power solid-state lasers for ICF driver[J]. High Power Laser and Particle Beams, 2000, 12(s1): 117-121 [8] 江梦春, 朱健强, 刘志刚, 等. 钕玻璃片状放大器玻璃腔的概念设计[J]. 光子学报, 2016, 45:1114001 doi: 10.3788/gzxb20164511.1114001Jiang Mengchun, Zhu Jianqiang, Liu Zhigang, et al. Conceptual design for glass cavity in Nd: glass slab amplifier[J]. Acta Photonica Sinica, 2016, 45: 1114001 doi: 10.3788/gzxb20164511.1114001 [9] 程晓锋, 苗心向, 陈远斌, 等. 神光-Ⅲ主机激光装置片状放大器洁净控制进展[J]. 强激光与粒子束, 2012, 24(1):1-2Cheng Xiaofeng, Miao Xinxiang, Chen Yuanbin, et al. Development on cleanliness control of slab amplifiers for Shenguang-Ⅲ laser driver[J]. High Power Laser and Particle Beams, 2012, 24(1): 1-2 [10] Lowdermilk W H. Status of the National Ignition Facility project[C]//Proceedings of SPIE 3047, Solid State Lasers for Application to Inertial Confinement Fusion: Second Annual International Conference. 1997: 16-37. [11] Spaeth M L, Manes K R, Honig J. Cleanliness for the NIF 1ω laser amplifiers[J]. Fusion Science and Technology, 2016, 69(1): 250-264. doi: 10.13182/FST14-861 [12] 程晓锋, 王洪彬, 苗心向, 等. 高功率固体激光驱动器污染控制及片状放大器洁净度改进[J]. 强激光与粒子束, 2013, 25(5):1147-1151 doi: 10.3788/HPLPB20132505.1147Cheng Xiaofeng, Wang Hongbin, Miao Xinxiang, et al. Contamination control for high-power solid-state laser driver and improvement of cleanliness in slab amplifiers[J]. High Power Laser and Particle Beams, 2013, 25(5): 1147-1151 doi: 10.3788/HPLPB20132505.1147 [13] 杨晓伟, 刘志刚, 任志远, 等. 高功率激光片状放大器片腔内流场模拟及优化[J]. 中国激光, 2016, 43:0901002 doi: 10.3788/CJL201643.0901002Yang Xiaowei, Liu Zhigang, Ren Zhiyuan, et al. Simulation and optimization of internal flow field in high power laser slab amplifiers[J]. Chinese Journal of Lasers, 2016, 43: 0901002 doi: 10.3788/CJL201643.0901002 [14] Ren Zhiyuan, Zhu Jianqiang, Liu Zhigang, et al. Optimizing the cleanliness in multi-segment disk amplifiers based on vector flow schemes[J]. High Power Laser Science and Engineering, 2018, 6: e1. doi: 10.1017/hpl.2017.36 [15] 张攀政, 冯滔, 谢静, 等. 间断多次氮气吹扫法提高片状放大器在线洁净度研究[J]. 中国激光, 2018, 45:0401014 doi: 10.3788/CJL201845.0401014Zhang Panzheng, Feng Tao, Xie Jing, et al. Disk amplifier on-line cleanliness improvement achieved by intermittent nitrogen gas purge[J]. Chinese Journal of Lasers, 2018, 45: 0401014 doi: 10.3788/CJL201845.0401014 [16] 万阳. 反射镜箱动态吹扫数值模拟与试验研究[D]. 重庆: 重庆大学, 2017Wan Yang. The numerical simulation and experiment research of the reflect mirror trunk transient blow[D]. Chongqing: Chongqing University, 2017