Direct current high voltage power control strategy based on 200 kV/15 A inverter
-
摘要: 针对传统三相三电平逆变器在较小占空比模式下输出电压纹波较大的不足,提出了一种新的双重控制策略。该策略通过控制直流母线电压大小与逆变器的占空比,从而实现对输出直流电压较大范围内的可控调整。建立200 kV/15 A的逆变型直流高压电源MATLAB/Simulink系统仿真模型,采用上述控制策略,实现了输出电压分别为200 kV和20 kV时,纹波均小于±1%,验证了新型控制策略在输出电压宽范围情况下,输出电压纹波能够满足负载要求。Abstract: A new dual control strategy is proposed to solve the problem of large output voltage ripple of traditional three-phase three-level inverters with small duty cycle mode. By controlling the voltage of the DC bus and the duty ratio of the inverter, this strategy can realize controllable adjustment of the output DC voltage in a large range. The MATLAB/Simulink system simulation model of 200 kV/15 A inverter DC high-voltage power supply was established, and the above control strategy was used to realize that the ripple was less than ±1% when the output voltage was 200 kV and 20 kV respectively. It is verified that the new control strategy is effective in a wide range of output voltage. The output voltage ripple can meet the load requirements.
-
表 1 200 kV逆变型直流高压电源MATLAB/Simulink仿真模型各元件参数
Table 1. Component parameters of MATLAB/Simulink simulation model of 200 kV inverter DC high-voltage power supply
component name component parameters input AC voltage 10 kV AC grid frequency 50 Hz rated capacity of phase shifting transformer 80 MV·A rated voltage of phase shifting transformer 10 kV/1.1 kV/1.1 kV DC bus choke inductor 1 mH DC bus capacitor 450 mF frequency of inverter 150 Hz isolated booster transformer capacity 18 MV·A isolated booster transformer frequency 150 Hz rated voltage of isolated boost transformer 3.48 kV/142.25 kV high voltage filter resistor 68 Ω high voltage filter capacitor 300 nF -
[1] 章雪亮. 聚变装置辅助加热系统逆变型直流高压电源技术研究[D]. 武汉: 华中科技大学, 2016Zhang Xueliang. Research on the technology of inverter type DC high voltage power supply for auxiliary heating system of fusion device[D]. Wuhan: Huazhong University of Science and Technology, 2016 [2] 章雪亮. CFETR N-NBI样机加速器高压电源设计与关键技术研究[D]. 武汉: 华中科技大学, 2019Zhang Xueliang. Research and design of the acceleration grid power supply of CFETR N-NBI prototype[D]. Wuhan: Huazhong University of Science and Technology, 2019 [3] 夏令龙. 托卡马克辅助加热系统高压电源若干关键技术研究[D]. 武汉: 华中科技大学, 2015Xia Linglong. The study on several key techniques of high voltage power supply for auxiliary heating system in tokamaks[D]. Wuhan: Huazhong University of Science and Technology, 2015 [4] 王一农, 杜世俊, 刘小宁, 等. EAST中性束注入器加速极电源设计[J]. 合肥工业大学学报(自然科学版), 2005, 28(10):1292-1295Wang Yinong, Du Shijun, Liu Xiaoning, et al. Design of the power supply for the acceleration grids of the neutral beam injectors of the EAST tokamak[J]. Journal of Hefei University of Technology (Natural Science), 2005, 28(10): 1292-1295 [5] 张明, 周澜, 王姝, 等. 基于负离子的中性束注入器加速极逆变型高压电源控制策略[J]. 强激光与粒子束, 2019, 31:040012 doi: 10.11884/HPLPB201931.180265Zhang Ming, Zhou Lan, Wang Shu, et al. Control strategy for inverter type high voltage power supply for negative-ion based neutral beam injector[J]. High Power Laser and Particle Beams, 2019, 31: 040012 doi: 10.11884/HPLPB201931.180265 [6] 王威. 高压逆变电源控制方案研究[D]. 武汉: 华中科技大学, 2005Wang Wei. Research on control scheme for high-voltage inverter[D]. Wuhan: Huazhong University of Science and Technology, 2005 [7] 李良威, 李群湛, 刘炜. 24脉波整流器外特性仿真及其在城市轨道交通中的应用[J]. 城市轨道交通研究, 2007, 10(10):52-55 doi: 10.3969/j.issn.1007-869X.2007.10.014Li Liangwei, Li Qunzhan, Liu Wei. Simulation and application of external characteristic curve of 24-pulse rectifier in urban rail transit[J]. Urban Mass Transit, 2007, 10(10): 52-55 doi: 10.3969/j.issn.1007-869X.2007.10.014 [8] 张伟, 杜慧聪, 齐铂金, 等. 150kV/30kW逆变式电子束焊接高压电源设计[J]. 北京航空航天大学学报, 2014, 40(11):1531-1536 doi: 10.13700/j.bh.1001-5965.2013.0715Zhang Wei, Du Huicong, Qi Bojin, et al. 150kV/30kW inverter for electron beam welding power supply design[J]. Journal of Beijing University of Aeronautics and Astronsutics, 2014, 40(11): 1531-1536 doi: 10.13700/j.bh.1001-5965.2013.0715 [9] Ma Mingyao, Meng Na, Wang Hanyu, et al. Online monitoring of IGBT modules based on creating the non-interventional monitoring environment[J]. Microelectronics Reliability, 2021, 126: 114220. doi: 10.1016/j.microrel.2021.114220 [10] 杨恩清. 三电平逆变器在永磁同步电机驱动系统中的应用[D]. 重庆: 重庆大学, 2015Yang Enqing. Application of three-level inverter in permanent magnet synchronous motor drive system[D]. Chongqing: Chongqing University, 2015 [11] 胡刚. 三电平高压变频调速系统保护原理与实现技术研究[D]. 武汉: 华中科技大学, 2007Hu Gang. Research on protection theory and realization for high voltage three-level converter[D]. Wuhan: Huazhong University of Science and Technology, 2007 [12] Toigo V, Zanotto L, Bigi M, et al. Progress of the ITER NBI acceleration grid power supply reference design[J]. Fusion Engineering and Design, 2013, 88(6/8): 956-959. [13] 李亚维, 谢敏, 蓝欣, 等. 200 kV低纹波高稳定度直流高压电源[J]. 强激光与粒子束, 2016, 28:015016 doi: 10.11884/HPLPB201628.015016Li Yawei, Xie Min, Lan Xin, et al. A 200 kV high voltage DC power supply with high stability and low ripple[J]. High Power Laser and Particle Beams, 2016, 28: 015016 doi: 10.11884/HPLPB201628.015016 [14] Wang Dongyu, Yang Shu, Zhang Ming, et al. Concept design of the control method for the NBI acceleration grid power supply-conversion system of CFETR[J]. Fusion Engineering and Design, 2021, 165: 112253. doi: 10.1016/j.fusengdes.2021.112253 [15] Wang Dongyu, Zhang Ming, Ma Shaoxiang, et al. Design and control of the accelerator grid power supply-conversion system applied to CFETR N-NBI prototype[J]. Plasma Science and Technology, 2020, 22: 085601. doi: 10.1088/2058-6272/ab8d9c [16] 赵远哲, 胡纯栋, 谢远来, 等. CFETR NBI控制系统概念设计[J]. 核电子学与探测技术, 2021, 41(6):1066-1073 doi: 10.3969/j.issn.0258-0934.2021.06.023Zhao Yuanzhe, Hu Chundong, Xie Yuanlai, et al. Conceptual design of CFETR NBI control system[J]. Nuclear Electronics & Detection Technology, 2021, 41(6): 1066-1073 doi: 10.3969/j.issn.0258-0934.2021.06.023 [17] Suresh K, Parimalasundar E. A novel dual-leg DC-DC converter for wide range DC-AC conversion[J]. Automatika, 2022, 63(3): 572-579. doi: 10.1080/00051144.2022.2056809