Design of high stability nanosecond pulse power supply based on one-stage Marx compression
-
摘要: 针对目前缺乏标准纳秒高压脉冲电源的现状,开展高稳定性纳秒高压脉冲电源回路分析、结构设计及性能测试研究。通过建立纳秒脉冲发生器等效电路模型,仿真计算获得5级初级脉冲发生电路参数,以及一级压缩陡化间隙对纳秒脉冲特性的影响规律。通过纳秒高压脉冲电源结构设计及低抖动电晕稳定开关特性研究,建立高稳定输出的纳秒脉冲电源系统。研制纳秒电阻分压器,建立基于ns及µs量级传递校准测试相结合的刻度因数标定方法,准确获得纳秒电阻分压器的刻度因数。脉冲电源输出特性测试结果表明:纳秒脉冲电源系统可以输出上升时间2.3 ns±0.5 ns、幅值范围10~60 kV的指数纳秒脉冲;输出脉冲电压在全幅值范围内的相对标准偏差不大于±1.5%。Abstract: In response to the lack of standard nanosecond high-voltage pulse power supply, this paper carries out the circuit analysis, structural design and performance testing of high-stability nanosecond high-voltage pulse power supply. By establishing the equivalent circuit model of nanosecond pulse generator, the circuit parameters of 5-stage primary pulse generation and the influence law of one-stage compression steepening gap on the characteristics of nanosecond pulse are obtained by simulation. The nanosecond high-voltage pulse power supply structure design and low jitter corona stabilization switching characteristics are studied to establish a nanosecond pulse power supply system with highly stable output. Development of a nanosecond resistive voltage divider and establishment of a scale factor calibration method based on a combination of nanosecond and microsecond scale transfer calibration tests are made to accurately obtain the scale factor of the nanosecond resistive voltage divider. The pulse power supply output characteristics test results show that the nanosecond pulse power supply system can output exponential nanosecond pulses with a rise time of 2.3 ns±0.5 ns and an amplitude range of 10−60 kV; the relative standard deviation of the output pulse voltage in the full amplitude range is within ±1.5%.
-
表 1 一级压缩电路的部分电路参数
Table 1. Circuit parameters of the one-stage compression circuit
capacitor/pF inductance/nH resistor/Ω primary pulse circuit 500 ~1000 ~2 steepening circuit 200 100 — load resistor — — 50 表 2 陡化开关动作时间对纳秒脉冲电压参数的影响
Table 2. Effect of steepening switch action time on nanosecond pulse voltage parameters
steepening time/ns rise time/ns peak output voltage/kV efficiency/% primary pulse compressed pulse primary pulse compressed pulse 16 11.58 4.492 14.15 12.94 91.45 19 12.97 3.438 16.08 14.48 90.05 25 16.70 2.809 21.12 18.89 89.44 35 21.59 2.305 28.17 21.59 76.64 40 21.88 2.223 28.40 20.41 71.87 表 3 纳秒脉冲电源的输出特性
Table 3. Output characteristics of nanosecond pulse power supply
No. voltage amplitude at each voltage block/kV 15 kV 25 kV 35 kV 40 kV 50 kV 60 kV 1 14.88 24.16 35.55 40.10 50.60 59.78 2 14.90 24.65 34.72 39.86 49.89 57.90 3 15.24 23.87 34.38 39.59 49.87 61.06 4 15.03 24.48 34.93 39.65 51.35 60.24 5 14.76 24.17 35.34 40.17 51.49 59.51 6 14.79 24.49 34.48 39.39 51.09 61.03 7 14.91 24.35 35.98 39.61 50.33 58.55 8 15.01 24.75 34.71 39.88 50.28 59.07 9 15.14 24.47 34.50 40.10 50.55 59.04 10 14.77 24.18 35.66 39.71 49.85 60.64 11 14.15 24.32 35.92 40.36 51.06 59.06 12 14.88 24.15 35.30 39.42 51.73 59.51 13 14.78 24.49 34.99 39.36 50.24 59.05 14 14.89 24.05 34.45 39.69 51.37 59.44 15 14.88 24.68 35.13 39.66 50.65 58.57 16 14.89 24.84 34.38 38.97 51.35 59.04 17 14.87 24.50 34.88 39.95 50.66 58.68 18 14.80 24.79 34.71 39.88 50.69 60.64 19 14.91 23.68 35.45 40.66 50.24 58.67 20 15.22 24.22 34.93 40.05 50.23 60.23 21 14.88 24.17 34.71 39.65 49.84 60.16 22 15.00 24.33 34.47 40.10 50.59 59.49 23 15.14 24.32 34.68 39.86 50.68 60.98 24 15.00 24.04 35.13 39.36 50.57 59.91 25 15.14 24.00 34.54 39.92 52.67 59.44 26 14.65 24.34 34.11 39.61 49.46 59.09 27 15.01 24.67 33.99 39.70 50.67 59.48 28 14.92 24.69 34.92 39.79 49.86 58.56 29 15.12 24.15 34.71 39.61 50.92 59.10 30 15.12 24.54 34.68 40.05 50.96 59.07 average value 14.92 24.35 34.88 39.79 50.66 59.50 standard deviation (relative standard deviation) 0.21(1.383%) 0.29(1.171%) 0.49(1.417%) 0.34(0.845%) 0.68(1.336%) 0.82(1.375%) -
[1] IEC 61000-2-9-1996, Electromagnetic compatibility (EMC) - Part 2: environment - section 9: description of HEMP environment - radiated disturbance. Basic EMC publication[S]. [2] Wraight A, Prather W D, Sabath F. Developments in early-time (E1) high-altitude electromagnetic pulse (HEMP) test methods[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(3): 492-499. doi: 10.1109/TEMC.2013.2241442 [3] Hoad R, Radasky W A. Progress in high-altitude electromagnetic pulse (HEMP) standardization[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(3): 532-538. doi: 10.1109/TEMC.2012.2234753 [4] Sabath F, Potthast S. Tolerance values and the confidence level for high-altitude electromagnetic pulse (HEMP) field tests[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(3): 518-525. doi: 10.1109/TEMC.2012.2237032 [5] Lara M B, Mayes J R, Mayes M G, et al. A modular compact Marx generator design for the Gatling Marx generator system[C]//Proceedings of 2005 IEEE Pulsed Power Conference. 2005. [6] Carey W J, Mayes J R. Marx generator design and performance[C]//Proceedings of the 25th International Power Modulator Symposium. 2002: 625-628. [7] Pecastaing L, Paillol J, Reess T, et al. Very fast rise-time short-pulse high-voltage generator[J]. IEEE Transactions on Plasma Science, 2006, 34(5): 1822-1831. doi: 10.1109/TPS.2006.883346 [8] Hahn U, Herrmann M, Leipold F, et al. Nanosecond, kilovolt pulse generators[C]//Proceedings of the 28th IEEE International Conference on Plasma Science and 13th IEEE International Pulsed Power Conference. 2001: 1575-1578. [9] 邱爱慈. 脉冲功率技术应用[M]. 西安: 陕西科学技术出版社, 2016Qiu Aici. Application of pulse power technology[M]. Xi'an: Shanxi Science and Technology Press, 2016 [10] 谢霖燊, 贾伟, 郭帆, 等. 用于有界波模拟器的紧凑型纳秒脉冲源[J]. 环境技术, 2014(s1):60-62Xie Linshen, Jia Wei, Guo Fan, et al. A compact high voltage pulse generator for bounded-wave EMP simulator[J]. Environmental Technology, 2014(s1): 60-62 [11] 贾伟, 陈志强, 郭帆, 等. 基于MARX发生器的中小型电磁脉冲模拟器驱动源[J]. 强激光与粒子束, 2018, 30:073203 doi: 10.11884/HPLPB201830.170401Jia Wei, Chen Zhiqiang, Guo Fan, et al. Drivers of small and medium scale electromagnetic pulse simulator based on Marx generator[J]. High Power Laser and Particle Beams, 2018, 30: 073203 doi: 10.11884/HPLPB201830.170401 [12] 张北镇, 宋法伦, 甘延青, 等. 300 kV有界波EMP模拟器高压脉冲源的设计与研制[J]. 现代应用物理, 2019, 10:030401Zhang Beizhen, Song Falun, Gan Yanqing, et al. Design and development of a 300 kV high-voltage generator for bounded-wave EMP simulator[J]. Modern Applied Physics, 2019, 10: 030401 [13] 周开明, 李铮迪, 邓建红. 大动态高精度有界波电磁脉冲模拟器设计[J]. 强激光与粒子束, 2020, 32:063004 doi: 10.11884/HPLPB202032.190373Zhou Kaiming, Li Zhengdi, Deng Jianhong. Design of a high-precision and widely tunable bounded-wave electromagnetic pulse simulator[J]. High Power Laser and Particle Beams, 2020, 32: 063004 doi: 10.11884/HPLPB202032.190373 [14] Bailey V, Carboni V, Eichenberger C, et al. A 6-MV pulser to drive horizontally polarized EMP simulators[J]. IEEE Transactions on Plasma Science, 2010, 38(10): 2554-2558. doi: 10.1109/TPS.2010.2065245 [15] Schilling H, Schluter J, Peters M, et al. High voltage generator with fast risetime for EMP simulation[C]//Proceedings of the 10th IEEE International Pulsed Power Conference on Digest of Technical Papers. 1995: 1359-1364. [16] Gubanov V P, Korovin S D, Pegel I V, et al. Compact 1000 pps high-voltage nanosecond pulse generator[J]. IEEE Transactions on Plasma Science, 1997, 25(2): 258-265. doi: 10.1109/27.602497 [17] Tewari S V, Umbarkar S B, Agarwal R, et al. Development and analysis of PFN based compact Marx generator using finite integration technique for an antenna load[J]. IEEE Transactions on Plasma Science, 2013, 41(10): 2684-2690. doi: 10.1109/TPS.2013.2279483 [18] Baum C E. Electromagnetic sensors and measurement techniques[M]//Thompson J E, Luessen L H. Fast Electrical and Optical Measurements. Dordrecht: Springer, 1986. [19] 王启武, 李炎新, 石立华. 纳秒电磁脉冲测量用D-dot探头设计及实验[J]. 强激光与粒子束, 2015, 27:115004 doi: 10.11884/HPLPB201527.115004Wang Qiwu, Li Yanxin, Shi Lihua. Design and experimental research of D-dot probe for nuclear electromagnetic pulse measurement[J]. High Power Laser and Particle Beams, 2015, 27: 115004 doi: 10.11884/HPLPB201527.115004 [20] Liu Jinliang, Ye Bing, Zhan Tianwen, et al. Coaxial capacitive dividers for high-voltage pulse measurements in intense electron beam accelerator with water pulse-forming line[J]. IEEE Transactions on Instrumentation and Measurement, 2009, 58(1): 161-166. doi: 10.1109/TIM.2008.927195 [21] 王亮平, 郭宁, 李岩, 等. 测量强光一号负载电压的电容分压器[J]. 强激光与粒子束, 2010, 22(3):696-700 doi: 10.3788/HPLPB20102203.0696Wang Liangping, Guo Ning, Li Yan, et al. Capacitive divider for voltage measurement of diode load on Qiangguang-I accelerator[J]. High Power Laser and Particle Beams, 2010, 22(3): 696-700 doi: 10.3788/HPLPB20102203.0696 [22] Zhang Lu, Mao Chen, Pu Lu, et al. Conical voltage sensor for measuring very fast transient overvoltage up to 3 MV in ultra-high-voltage class gas-insulated switchgear[J]. IET Science, Measurement & Technology, 2018, 12(3): 405-410. [23] Liu Yi, Lin Fuchang, Hu Guan, et al. Design and performance of a resistive-divider system for measuring fast HV impulse[J]. IEEE Transactions on Instrumentation and Measurement, 2010, 60(3): 996-1002. [24] He W, Yin H, Phelps A D R, et al. Study of a fast, high-impedance, high-voltage pulse divider[J]. Review of Scientific Instruments, 2001, 72(11): 4266-4269. doi: 10.1063/1.1408937 [25] Khan M S, Agazar M, Le Bihan Y. Development of a standard measuring system for high-voltage nanosecond pulse measurements[C]//Proceedings of 2020 Conference on Precision Electromagnetic Measurements. 2020: 1-2.