留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一级Marx压缩的高稳定纳秒脉冲电源的设计

姚学玲 焦梓家 孙晋茹 谌贝 陈景亮

姚学玲, 焦梓家, 孙晋茹, 等. 一级Marx压缩的高稳定纳秒脉冲电源的设计[J]. 强激光与粒子束, 2023, 35: 065002. doi: 10.11884/HPLPB202335.220362
引用本文: 姚学玲, 焦梓家, 孙晋茹, 等. 一级Marx压缩的高稳定纳秒脉冲电源的设计[J]. 强激光与粒子束, 2023, 35: 065002. doi: 10.11884/HPLPB202335.220362
Yao Xueling, Jiao Zijia, Sun Jinru, et al. Design of high stability nanosecond pulse power supply based on one-stage Marx compression[J]. High Power Laser and Particle Beams, 2023, 35: 065002. doi: 10.11884/HPLPB202335.220362
Citation: Yao Xueling, Jiao Zijia, Sun Jinru, et al. Design of high stability nanosecond pulse power supply based on one-stage Marx compression[J]. High Power Laser and Particle Beams, 2023, 35: 065002. doi: 10.11884/HPLPB202335.220362

一级Marx压缩的高稳定纳秒脉冲电源的设计

doi: 10.11884/HPLPB202335.220362
基金项目: 强脉冲辐射环境模拟与效应国家重点实验室开放课题基金项目(SKLIPR2101)
详细信息
    作者简介:

    姚学玲,xlyao@xjtu.edu.cn

    通讯作者:

    孙晋茹,jinrusun2016@xjtu.edu.cn

  • 中图分类号: TM835

Design of high stability nanosecond pulse power supply based on one-stage Marx compression

  • 摘要: 针对目前缺乏标准纳秒高压脉冲电源的现状,开展高稳定性纳秒高压脉冲电源回路分析、结构设计及性能测试研究。通过建立纳秒脉冲发生器等效电路模型,仿真计算获得5级初级脉冲发生电路参数,以及一级压缩陡化间隙对纳秒脉冲特性的影响规律。通过纳秒高压脉冲电源结构设计及低抖动电晕稳定开关特性研究,建立高稳定输出的纳秒脉冲电源系统。研制纳秒电阻分压器,建立基于ns及µs量级传递校准测试相结合的刻度因数标定方法,准确获得纳秒电阻分压器的刻度因数。脉冲电源输出特性测试结果表明:纳秒脉冲电源系统可以输出上升时间2.3 ns±0.5 ns、幅值范围10~60 kV的指数纳秒脉冲;输出脉冲电压在全幅值范围内的相对标准偏差不大于±1.5%。
  • 图  1  纳秒脉冲发生器的原理电路

    Figure  1.  Principle circuit of nanosecond pulse generation

    图  2  Marx一级压缩回路

    Figure  2.  Marx one-stage compression circuit

    图  3  陡化时刻对纳秒脉冲源输出结果的影响

    Figure  3.  Effect of steepening moment on the output of nanosecond pulse generator

    图  4  陡化电感对一级压缩纳秒脉冲输出的影响

    Figure  4.  Effect of steepening inductance on the output of one-stage compression nanosecond pulse

    图  5  纳秒脉冲发生器回路的结构

    Figure  5.  Structure of nanosecond pulse generator circuit

    图  6  Marx发生回路电晕稳定放电开关的结构及电场分布

    Figure  6.  Structure and electric field distribution of corona stabilized discharge switch in Marx generation circuit

    图  7  电晕稳定放电开关的放电时延和抖动

    Figure  7.  Discharge time delay and jitter of corona stabilized discharge switch

    图  8  Marx发生回路和陡化电容

    Figure  8.  Marx generator and steepening capacitor

    图  9  参与传递的传感器的方波响应

    Figure  9.  Square wave response of the sensor involved

    图  10  纳秒电阻分压器与P5100A的对比测量波形

    Figure  10.  Comparison measurement waveform of nanosecond resistance divider with P5100A

    图  11  纳秒电源的输出波形

    Figure  11.  Output waveforms of nanosecond power supply

    表  1  一级压缩电路的部分电路参数

    Table  1.   Circuit parameters of the one-stage compression circuit

    capacitor/pFinductance/nHresistor/Ω
    primary pulse circuit50010002
    steepening circuit200100
    load resistor50
    下载: 导出CSV

    表  2  陡化开关动作时间对纳秒脉冲电压参数的影响

    Table  2.   Effect of steepening switch action time on nanosecond pulse voltage parameters

    steepening time/nsrise time/nspeak output voltage/kVefficiency/%
    primary pulsecompressed pulseprimary pulsecompressed pulse
    16 11.58 4.492 14.15 12.94 91.45
    19 12.97 3.438 16.08 14.48 90.05
    25 16.70 2.809 21.12 18.89 89.44
    35 21.59 2.305 28.17 21.59 76.64
    40 21.88 2.223 28.40 20.41 71.87
    下载: 导出CSV

    表  3  纳秒脉冲电源的输出特性

    Table  3.   Output characteristics of nanosecond pulse power supply

    No.voltage amplitude at each voltage block/kV
    15 kV25 kV35 kV40 kV50 kV60 kV
    114.8824.1635.5540.1050.6059.78
    214.9024.6534.7239.8649.8957.90
    315.2423.8734.3839.5949.8761.06
    415.0324.4834.9339.6551.3560.24
    514.7624.1735.3440.1751.4959.51
    614.7924.4934.4839.3951.0961.03
    714.9124.3535.9839.6150.3358.55
    815.0124.7534.7139.8850.2859.07
    915.1424.4734.5040.1050.5559.04
    1014.7724.1835.6639.7149.8560.64
    1114.1524.3235.9240.3651.0659.06
    1214.8824.1535.3039.4251.7359.51
    1314.7824.4934.9939.3650.2459.05
    1414.8924.0534.4539.6951.3759.44
    1514.8824.6835.1339.6650.6558.57
    1614.8924.8434.3838.9751.3559.04
    1714.8724.5034.8839.9550.6658.68
    1814.8024.7934.7139.8850.6960.64
    1914.9123.6835.4540.6650.2458.67
    2015.2224.2234.9340.0550.2360.23
    2114.8824.1734.7139.6549.8460.16
    2215.0024.3334.4740.1050.5959.49
    2315.1424.3234.6839.8650.6860.98
    2415.0024.0435.1339.3650.5759.91
    2515.1424.0034.5439.9252.6759.44
    2614.6524.3434.1139.6149.4659.09
    2715.0124.6733.9939.7050.6759.48
    2814.9224.6934.9239.7949.8658.56
    2915.1224.1534.7139.6150.9259.10
    3015.1224.5434.6840.0550.9659.07
    average value14.9224.3534.8839.7950.6659.50
    standard deviation (relative standard deviation)0.21(1.383%)0.29(1.171%)0.49(1.417%)0.34(0.845%)0.68(1.336%)0.82(1.375%)
    下载: 导出CSV
  • [1] IEC 61000-2-9-1996, Electromagnetic compatibility (EMC) - Part 2: environment - section 9: description of HEMP environment - radiated disturbance. Basic EMC publication[S].
    [2] Wraight A, Prather W D, Sabath F. Developments in early-time (E1) high-altitude electromagnetic pulse (HEMP) test methods[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(3): 492-499. doi: 10.1109/TEMC.2013.2241442
    [3] Hoad R, Radasky W A. Progress in high-altitude electromagnetic pulse (HEMP) standardization[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(3): 532-538. doi: 10.1109/TEMC.2012.2234753
    [4] Sabath F, Potthast S. Tolerance values and the confidence level for high-altitude electromagnetic pulse (HEMP) field tests[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(3): 518-525. doi: 10.1109/TEMC.2012.2237032
    [5] Lara M B, Mayes J R, Mayes M G, et al. A modular compact Marx generator design for the Gatling Marx generator system[C]//Proceedings of 2005 IEEE Pulsed Power Conference. 2005.
    [6] Carey W J, Mayes J R. Marx generator design and performance[C]//Proceedings of the 25th International Power Modulator Symposium. 2002: 625-628.
    [7] Pecastaing L, Paillol J, Reess T, et al. Very fast rise-time short-pulse high-voltage generator[J]. IEEE Transactions on Plasma Science, 2006, 34(5): 1822-1831. doi: 10.1109/TPS.2006.883346
    [8] Hahn U, Herrmann M, Leipold F, et al. Nanosecond, kilovolt pulse generators[C]//Proceedings of the 28th IEEE International Conference on Plasma Science and 13th IEEE International Pulsed Power Conference. 2001: 1575-1578.
    [9] 邱爱慈. 脉冲功率技术应用[M]. 西安: 陕西科学技术出版社, 2016

    Qiu Aici. Application of pulse power technology[M]. Xi'an: Shanxi Science and Technology Press, 2016
    [10] 谢霖燊, 贾伟, 郭帆, 等. 用于有界波模拟器的紧凑型纳秒脉冲源[J]. 环境技术, 2014(s1):60-62

    Xie Linshen, Jia Wei, Guo Fan, et al. A compact high voltage pulse generator for bounded-wave EMP simulator[J]. Environmental Technology, 2014(s1): 60-62
    [11] 贾伟, 陈志强, 郭帆, 等. 基于MARX发生器的中小型电磁脉冲模拟器驱动源[J]. 强激光与粒子束, 2018, 30:073203 doi: 10.11884/HPLPB201830.170401

    Jia Wei, Chen Zhiqiang, Guo Fan, et al. Drivers of small and medium scale electromagnetic pulse simulator based on Marx generator[J]. High Power Laser and Particle Beams, 2018, 30: 073203 doi: 10.11884/HPLPB201830.170401
    [12] 张北镇, 宋法伦, 甘延青, 等. 300 kV有界波EMP模拟器高压脉冲源的设计与研制[J]. 现代应用物理, 2019, 10:030401

    Zhang Beizhen, Song Falun, Gan Yanqing, et al. Design and development of a 300 kV high-voltage generator for bounded-wave EMP simulator[J]. Modern Applied Physics, 2019, 10: 030401
    [13] 周开明, 李铮迪, 邓建红. 大动态高精度有界波电磁脉冲模拟器设计[J]. 强激光与粒子束, 2020, 32:063004 doi: 10.11884/HPLPB202032.190373

    Zhou Kaiming, Li Zhengdi, Deng Jianhong. Design of a high-precision and widely tunable bounded-wave electromagnetic pulse simulator[J]. High Power Laser and Particle Beams, 2020, 32: 063004 doi: 10.11884/HPLPB202032.190373
    [14] Bailey V, Carboni V, Eichenberger C, et al. A 6-MV pulser to drive horizontally polarized EMP simulators[J]. IEEE Transactions on Plasma Science, 2010, 38(10): 2554-2558. doi: 10.1109/TPS.2010.2065245
    [15] Schilling H, Schluter J, Peters M, et al. High voltage generator with fast risetime for EMP simulation[C]//Proceedings of the 10th IEEE International Pulsed Power Conference on Digest of Technical Papers. 1995: 1359-1364.
    [16] Gubanov V P, Korovin S D, Pegel I V, et al. Compact 1000 pps high-voltage nanosecond pulse generator[J]. IEEE Transactions on Plasma Science, 1997, 25(2): 258-265. doi: 10.1109/27.602497
    [17] Tewari S V, Umbarkar S B, Agarwal R, et al. Development and analysis of PFN based compact Marx generator using finite integration technique for an antenna load[J]. IEEE Transactions on Plasma Science, 2013, 41(10): 2684-2690. doi: 10.1109/TPS.2013.2279483
    [18] Baum C E. Electromagnetic sensors and measurement techniques[M]//Thompson J E, Luessen L H. Fast Electrical and Optical Measurements. Dordrecht: Springer, 1986.
    [19] 王启武, 李炎新, 石立华. 纳秒电磁脉冲测量用D-dot探头设计及实验[J]. 强激光与粒子束, 2015, 27:115004 doi: 10.11884/HPLPB201527.115004

    Wang Qiwu, Li Yanxin, Shi Lihua. Design and experimental research of D-dot probe for nuclear electromagnetic pulse measurement[J]. High Power Laser and Particle Beams, 2015, 27: 115004 doi: 10.11884/HPLPB201527.115004
    [20] Liu Jinliang, Ye Bing, Zhan Tianwen, et al. Coaxial capacitive dividers for high-voltage pulse measurements in intense electron beam accelerator with water pulse-forming line[J]. IEEE Transactions on Instrumentation and Measurement, 2009, 58(1): 161-166. doi: 10.1109/TIM.2008.927195
    [21] 王亮平, 郭宁, 李岩, 等. 测量强光一号负载电压的电容分压器[J]. 强激光与粒子束, 2010, 22(3):696-700 doi: 10.3788/HPLPB20102203.0696

    Wang Liangping, Guo Ning, Li Yan, et al. Capacitive divider for voltage measurement of diode load on Qiangguang-I accelerator[J]. High Power Laser and Particle Beams, 2010, 22(3): 696-700 doi: 10.3788/HPLPB20102203.0696
    [22] Zhang Lu, Mao Chen, Pu Lu, et al. Conical voltage sensor for measuring very fast transient overvoltage up to 3 MV in ultra-high-voltage class gas-insulated switchgear[J]. IET Science, Measurement & Technology, 2018, 12(3): 405-410.
    [23] Liu Yi, Lin Fuchang, Hu Guan, et al. Design and performance of a resistive-divider system for measuring fast HV impulse[J]. IEEE Transactions on Instrumentation and Measurement, 2010, 60(3): 996-1002.
    [24] He W, Yin H, Phelps A D R, et al. Study of a fast, high-impedance, high-voltage pulse divider[J]. Review of Scientific Instruments, 2001, 72(11): 4266-4269. doi: 10.1063/1.1408937
    [25] Khan M S, Agazar M, Le Bihan Y. Development of a standard measuring system for high-voltage nanosecond pulse measurements[C]//Proceedings of 2020 Conference on Precision Electromagnetic Measurements. 2020: 1-2.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  584
  • HTML全文浏览量:  187
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-28
  • 修回日期:  2023-03-20
  • 录用日期:  2023-03-09
  • 网络出版日期:  2023-03-23
  • 刊出日期:  2023-05-06

目录

    /

    返回文章
    返回