Development of high-power pulse inductor for vertical field power supply of TT-1 device
-
摘要: 为满足等离子体放电需求,垂直场电源需串联脉冲电感来改变输出电流参数。针对TT-1装置垂直场电源对输出电流的要求,对脉冲电感进行了设计与研制。根据电感的运行工况及参数,通过感应系数法和累积温升法进行详细的数学分析和结构设计。基于理论设计,建立Ansys仿真模型对电感进行了磁场及温升的研究。最后完成电感的研制,根据电桥测量和实验波形,实际电感参数与理论分析高度吻合,并对电感进行大电流条件下的疲劳实验和温升实验,验证理论设计的可靠性。Abstract: To meet the demand of plasma discharge, pulse inductor should be connected to the vertical field power supply to change the output current parameters. To satisfy the need of the output current of the vertical field power supply of the TT-1 device, pulse inductor was designed and developed. According to the operating conditions and parameters of the inductor, the detailed mathematical analysis and structural design were carried out by the induction coefficient method and cumulative temperature rise method. Based on the theoretical design, an Ansys simulation model was established to study the magnetic field and temperature rise of the inductor. Finally, the inductor was developed. According to the bridge measurement and experimental waveform, the actual inductance parameters agree well with the theoretical analysis. The experiment of fatigue and temperature was carried out on the inductor under the condition of high current to verify the reliability of the theoretical design.
-
Key words:
- TT-1 device /
- pulse inductor /
- vertical field power supply /
- Ansys simulation
-
表 1 TT-1装置垂直场电源参数
Table 1. Main working parameters of pulse inductor
coil inductance Lo/mH coil resistance Ro/mΩ pulse capacitors Cv/mF charging voltage Uo/V peak current Ip/kA peak current time tp/ms 8.4 67 3.6 9724 4.7 11 表 2 脉冲电感主要设计参数
Table 2. Main designing parameters of pulse inductor
work cycle/min pulse discharge time/s inductance/mH withstand voltage/kV maximum working voltage/V maximum working current/A DC resistance/mΩ duty cycle 5 1 5.8 10 3961 4693 <25 1/300 表 3 铝和铜材料性能对比
Table 3. Comparison of properties between aluminum and copper
atomic
weightdensity/
(kg·m−3)resistivity/
(nΩ·m)resistance
temperature
coefficient/
(nΩ·m−1·K−1)tensile
strength/
MPapositive
modulus of
elasticity/
GPalinear
expansion
coefficient/
(10−6K−1)specific
heat
capacity/
(J·kg·−1·K−1)thermal
conductivity/
(W·m−1·K−1)aluminum 36.98 2700 28.3 0.1 150~200 63 23 900 231 copper 63.54 8890 17.77 0.09525 350~470 120 17 392 436 -
[1] 管锐, 周宇, 高宗球, 等. HT-6M托卡马克加热场脉冲电源的设计[J/OL]. 电源学报, 1-12. http://kns.cnki.net/kcms/detail/12.1420.TM.20220506.1120.002.htmlGuan Rui, Zhou Yu, Gao Zongqiu, et al. Design of pulsed power supply for HT-6M Tokamak heating field[J/OL]. Journal of Power Supply, 1-12. http://kns.cnki.net/kcms/detail/12.1420.TM.20220506.1120.002.html. [2] Jin Y S, Lee H S, Kim J S, et al. Compact 200 kJ pulse power system with a simple crowbar circuit[C]//Proceedings of the 14th IEEE International Pulsed Power Conference. 2003: 1239-1242. [3] 仝玮. 大型超导装置失超保护系统换流回路及其关键问题研究[D]. 合肥: 中国科学技术大学, 2021Tong Wei. Study on commutation circuit and key problems of quench protection system for large scale superconducting devices[D]. Hefei: University of Science and Technology of China, 2021 [4] 李传. ITER极向场变流器高功率大电流电抗器的设计与研制[D]. 武汉: 华中科技大学, 2016Li Chuan. Research and design on high-power large-current reactor applied to ITER poloidal field converter power supply[D]. Wuhan: Huazhong University of Science and Technology, 2016 [5] 王莹. 高功率脉冲电源[M]. 北京: 原子能出版社, 1991Wang Ying. High power pulse power supply[M]. Beijing: Atomic Energy Press, 1991 [6] 王莹. 脉冲功率技术综述[J]. 电气技术, 2009(4):5-9Wang Ying. The summary for technology of pulsed power[J]. Electrical Engineering, 2009(4): 5-9 [7] 李松乘, 鲁军勇, 程龙, 等. 电磁发射用脉冲电抗器应力分析及结构设计[J]. 国防科技大学学报, 2019, 41(4):39-45 doi: 10.11887/j.cn.201904006Li Songcheng, Lu Junyong, Cheng Long, et al. Stress analysis and structure optimization of pulse reactor for electromagnetic launch[J]. Journal of National University of Defense Technology, 2019, 41(4): 39-45 doi: 10.11887/j.cn.201904006 [8] 刘佳, 董健年, 张小兵, 等. 电磁发射用电抗器温度场影响因素研究[J]. 弹道学报, 2014, 26(2):100-105 doi: 10.3969/j.issn.1004-499X.2014.02.021Liu Jia, Dong Jiannian, Zhang Xiaobing, et al. Research on factors influencing temperature of pulse inductor used in electromagnetic launch[J]. Journal of Ballistics, 2014, 26(2): 100-105 doi: 10.3969/j.issn.1004-499X.2014.02.021 [9] 苏成. 小型化脉冲电感的研究[D]. 武汉: 华中科技大学, 2013Su Cheng. Research on a miniaturized pulsed inductor[D]. Wuhan: Huazhong University of Science and Technology, 2013 [10] 卡兰塔罗夫, 采依特林. 电感计算手册[M]. 陈汤铭, 刘保安, 罗应立, 等译. 北京: 机械工业出版社, 1992Kalantarov. Inductance calculation manual[M]. Chen Tangming, Liu Baoan, Luo Yingli, et al, trans. Beijing: China Machine Press, 1992 [11] 叶占刚. 干式空心电抗器的温升对其质量的影响[J]. 变压器, 1998, 35(3):31-33 doi: 10.19487/j.cnki.1001-8425.1998.03.008Ye Zhangang. Influence of temperature rise on quality of dry-type air-core reactor[J]. Transformer, 1998, 35(3): 31-33 doi: 10.19487/j.cnki.1001-8425.1998.03.008 [12] 叶占刚. 干式空心电抗器的温升试验与绕组温升的计算[J]. 变压器, 1999, 36(9):6-12 doi: 10.19487/j.cnki.1001-8425.1999.09.002Ye Zhangang. Temperature rise test of dry-type air-core reactor and calculation of its winding temperature rise[J]. Transformer, 1999, 36(9): 6-12 doi: 10.19487/j.cnki.1001-8425.1999.09.002 [13] 汪泉弟, 张艳, 李永明, 等. 干式空心电抗器周围工频磁场分布[J]. 电工技术学报, 2009, 24(1):8-13 doi: 10.3321/j.issn:1000-6753.2009.01.002Wang Quandi, Zhang Yan, Li Yongming, et al. The power frequency magnetic field distribution around dry-type air-core reactor[J]. Transactions of China Electrotechnical Society, 2009, 24(1): 8-13 doi: 10.3321/j.issn:1000-6753.2009.01.002 [14] 褚凡武, 付颖, 王琦, 等. 不同工况下干式空心滤波电抗器稳态磁场及电磁力分布规律[J]. 高压电器, 2019, 55(11):41-47 doi: 10.13296/j.1001-1609.hva.2019.11.005Chu Fanwu, Fu Ying, Wang Qi, et al. Distributions of steady-state magnetic field and electromagnetic force of a dry-type air-core filter reactor under different operating conditions[J]. High Voltage Apparatus, 2019, 55(11): 41-47 doi: 10.13296/j.1001-1609.hva.2019.11.005