[1] |
Spaeth M L, Wegner P J, Suratwala T I, et al. Optics recycle loop strategy for NIF operations above UV laser-induced damage threshold[J]. Fusion Science and Technology, 2016, 69(1): 265-294. doi: 10.13182/FST15-119
|
[2] |
Chambonneau M, Lamaignère L. Multi-wavelength growth of nanosecond laser-induced surface damage on fused silica gratings[J]. Scientific Reports, 2018, 8(1): 891. doi: 10.1038/s41598-017-18957-9
|
[3] |
Negres R A, Cross D A, Liao Z M, et al. Growth model for laser-induced damage on the exit surface of fused silica under UV, ns laser irradiation[J]. Optics Express, 2014, 22(4): 3824-3844. doi: 10.1364/OE.22.003824
|
[4] |
Negres R A, Norton M A, Cross D A, et al. Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation[J]. Optics Express, 2010, 18(19): 19966-19976. doi: 10.1364/OE.18.019966
|
[5] |
Laurence T A, Negres R A, Ly S, et al. Role of defects in laser-induced modifications of silica coatings and fused silica using picosecond pulses at 1053 nm: II. Scaling laws and the density of precursors[J]. Optics Express, 2017, 25(13): 15381-15401. doi: 10.1364/OE.25.015381
|
[6] |
Negres R A, Raman R N, Bude J D, et al. Dynamics of transient absorption in bulk DKDP crystals following laser energy deposition[J]. Optics Express, 2012, 20(18): 20447-20458. doi: 10.1364/OE.20.020447
|
[7] |
Raman R N, Negres R A, Demos S G. Kinetics of ejected particles during breakdown in fused silica by nanosecond laser pulses[J]. Applied Physics Letters, 2011, 98: 051901. doi: 10.1063/1.3549193
|
[8] |
Demos S G, Negres R A, Raman R N, et al. Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica[J]. Laser & Photonics Reviews, 2013, 7(3): 444-452.
|
[9] |
Demos S G, Negres R A, Raman R N, et al. Relaxation dynamics of nanosecond laser superheated material in dielectrics[J]. Optica, 2015, 2(8): 765-772. doi: 10.1364/OPTICA.2.000765
|
[10] |
Kanitz A, Kalus M R, Gurevich E L, et al. Review on experimental and theoretical investigations of the early stage, femtoseconds to microseconds processes during laser ablation in liquid-phase for the synthesis of colloidal nanoparticles[J]. Plasma Sources Science and Technology, 2019, 28: 103001. doi: 10.1088/1361-6595/ab3dbe
|
[11] |
赵元安, 邵建达, 刘晓凤, 等. 光学元件的激光损伤问题[J]. 强激光与粒子束, 2022, 34:011004 doi: 10.11884/HPLPB202234.210331Zhao Yuan’an, Shao Jianda, Liu Xiaofeng, et al. Tracking and understanding laser damage events in optics[J]. High Power Laser and Particle Beams, 2022, 34: 011004 doi: 10.11884/HPLPB202234.210331
|
[12] |
杨李茗, 黄进, 刘红婕, 等. 熔石英元件紫外脉冲激光辐照损伤特性研究进展综述[J]. 光学学报, 2022, 42:1714004 doi: 10.3788/AOS202242.1714004Yang Liming, Huang Jin, Liu Hongjie, et al. Review of research progress on damage characteristics of fused silica optics under ultraviolet pulsed laser irradiation[J]. Acta Optica Sinica, 2022, 42: 1714004 doi: 10.3788/AOS202242.1714004
|
[13] |
Huang Jin, Liu Hongjie, Wang Fengrui, et al. Influence of bulk defects on bulk damage performance of fused silica optics at 355 nm nanosecond pulse laser[J]. Optics Express, 2017, 25(26): 33416-33428. doi: 10.1364/OE.25.033416
|
[14] |
郑万国, 祖小涛, 袁晓东, 等. 高功率激光装置的负载能力及其相关物理问题[M]. 北京: 科学出版社, 2014Zheng Wanguo, Zu Xiaotao, Yuan Xiaodong, et al. Damage resistance and physical problems of high power laser facilities[M]. Beijing: Science Press, 2014
|
[15] |
Demos S G, Negres R A, Rubenchik A M. Dynamics of the plume containing nanometric-sized particles ejected into the atmospheric air following laser-induced breakdown on the exit surface of a CaF2 optical window[J]. Applied Physics Letters, 2014, 104: 031603. doi: 10.1063/1.4862815
|
[16] |
Nguyen V H, Kalal M, Suk H, et al. Interferometric analysis of sub-nanosecond laser-induced optical breakdown dynamics in the bulk of fused-silica glass[J]. Optics Express, 2018, 26(12): 14999-15008. doi: 10.1364/OE.26.014999
|
[17] |
Demos S G, Raman R N, Negres R A. Time-resolved imaging of processes associated with exit-surface damage growth in fused silica following exposure to nanosecond laser pulses[J]. Optics Express, 2013, 21(4): 4875-4888. doi: 10.1364/OE.21.004875
|
[18] |
Peng Ge, Zhang Peng, Dong Zhe, et al. Spatial sputtering of fused silica after a laser-induced exploding caused by a 355 nm nd: YAG laser[J]. Frontiers in Physics, 2022, 10: 980249. doi: 10.3389/fphy.2022.980249
|
[19] |
Bude J, Guss G, Matthews M, et al. The effect of lattice temperature on surface damage in fused silica optics[C]//Proceedings of SPIE 6270, Laser-induced Damage in Optical Materials. 2007.
|
[20] |
Zhu Chengyu, Liang Lingxi, Yuan Hang, et al. Investigation of stress wave and damage morphology growth generated by laser-induced damage on rear surface of fused silica[J]. Optics Express, 2020, 28(3): 3942-3951. doi: 10.1364/OE.384036
|