Effects of Fe and its cluster defects on laser damage of KDP and ADP crystals using first-principles
-
摘要: 由于金属杂质离子对晶体损伤性质有不容忽视的影响,受实验条件限制,Fe及其团簇缺陷对晶体的影响机制尚不明确。采用第一性原理的方法,对磷酸二氢钾(KDP)和磷酸二氢铵(ADP)晶体中的Fe及其团簇缺陷进行模拟研究,确定其对晶体结构及光学性质方面的影响。研究发现,Fe进入KDP和ADP晶体中主要以取代P原子形成FeO4基团最稳定,且其稳定形式以Fe3+为主。磁性状态研究发现磁性条件对晶体的结构和能量影响不大,Fe对晶体的损伤主要通过引起200~300 nm范围明显的光学吸收影响损伤阈值。Fe进入晶体中形成团簇缺陷可通过电荷补偿与O空位(VO)复合,几乎不会与OH空位(VOH)复合,团簇缺陷以Fe对晶体结构和性质的影响为主。Abstract: Due to the significant influence of metal impurity ions on the damage properties of crystals and the limitation of experimental conditions, the effect mechanism of Fe and its cluster defects remains unclear. In this paper, Fe and its cluster defects in KDP and ADP crystals are simulated by the method of first-principles, to determine their effects on crystal structure and optical properties. It is found that Fe atom entered into KDP and ADP crystals mainly by replacing P atom to form FeO4 group, and the relatively stable form is Fe3+. In addition, the magnetic condition has little effect on the structure and energy of the crystal, and the damage threshold of the crystal is mainly affected by the obvious optical absorption in the range of 200−300 nm. The cluster defects form when there is impurity of Fe, which could be recombined with VO through charge compensation, but hardly with VOH. The influence of the cluster defects is mainly the effect of Fe on the crystal structure and properties.
-
Key words:
- KDP crystal /
- ADP crystal /
- defect /
- laser damage /
- first-principles
-
表 1 KDP晶体中Fe取代不同位点的模型体系的缺陷形成能
Table 1. Defect formation energies of the KDP crystal with Fe in different locations
location defect formation energy/eV FeH 8.7 FeP 2.74 FeK 12.59 Fei 16.10 表 2 KDP和ADP晶体中Fe团簇缺陷的缺陷形成能
Table 2. Defect formation energies of the KDP crystal with Fe atom in different locations
defect defect formation energy/eV KDP ADP VOH 8.56 0.15 FeP+VOH 24.38 16.41 表 3 KDP和ADP晶体不同磁性条件下Fe−O键的键长变化
Table 3. Fe−O bond lengths in KDP and ADP with different magnetic states
defects bond length of Fe−O/nm KDP ADP pristine P-O 0.155 0.155 NM FeP+ 0.162 0.160 NM FeP0 0.163 0.162 NM FeP− 0.166 0.165 NM FeP2− 0.170 0.169 FM FeP+ 0.162 0.160 FM FeP0 0.163 0.162 FM FeP− 0.166 0.165 FM FeP2− 0.191 0.169 AFM FeP+ 0.162 0.161 AFM FeP0 0.163 0.162 AFM FeP− 0.166 0.165 AFM FeP2− 0.170 0.169 -
[1] Zaitseva N, Atherton J, Rozsa R, et al. Design and benefits of continuous filtration in rapid growth of large KDP and DKDP crystals[J]. Journal of Crystal Growth, 1999, 197(4): 911-920. doi: 10.1016/S0022-0248(98)01095-1 [2] Rashkovich L N, Kronsky N V. Influence of Fe3+ and Al3+ ions on the kinetics of steps on the {1 0 0} faces of KDP[J]. Journal of Crystal Growth, 1997, 182(3/4): 434-441. [3] Sasaki T, Yokotani A. Growth of large KDP crystals for laser fusion experiments[J]. Journal of Crystal Growth, 1990, 99(1/4): 820-826. [4] Eremina T A, Kuznetsov V A, Eremin N N, et al. On the mechanism of impurity influence on growth kinetics and surface morphology of KDP crystals—II: experimental study of influence of bivalent and trivalent impurity ions on growth kinetics and surface morphology of KDP crystals[J]. Journal of Crystal Growth, 2005, 273(3/4): 586-593. [5] Pritula I M, Velikhov Y N. Some aspects of UV absorption of NLO KDP crystals[C]//Proceedings of SPIE 3793, Operational Characteristics and Crystal Growth of Nonlinear Optical Materials. 1999: 202-208. [6] Salo V I, Kolybayeva M I, Puzikov V M, et al. Effect of impurities on the value of the bulk laser damage threshold of KDP single crystals[C]//Proceedings of SPIE 3359, Optical Diagnostics of Materials and Devices for Opto-, Micro-, and Quantum Electronics 1997. 1998: 549-552. [7] Salo V I, Atroschenko L V, Garnov S V, et al. Structure, impurity composition, and laser damage threshold of the subsurface layers in KDP and KD*P single crystals[C]//Proceedings of SPIE 2714, 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials. 1996: 197-201. [8] Azarov V V, Atroshchenko L V, Danileiko Y K, et al. Influence of structure defects on the internal optical strength of KDP single crystals[J]. Soviet Journal of Quantum Electronics, 1985, 15(1): 89-90. doi: 10.1070/QE1985v015n01ABEH005862 [9] Garces N Y, Stevens K T, Halliburton L E, et al. Optical absorption and electron paramagnetic resonance of Fe ions in KDP crystals[J]. Journal of Crystal Growth, 2001, 225(2/4): 435-439. [10] Eremina T A, Kuznetsov V A, Okhrimenko T M, et al. Structures of impurity defects in KDP and their influence on quality of crystals[C]//Proceedings of SPIE - The International Society for Optical Engineering. 2003: 153-158. [11] Malekfar R, Naghavi N. Raman back-scattering spectroscopy of KDP crystal doped by Fe+3 at low temperatures in the lower hydrogen bonds region[J]. AIP Conference Proceedings, 2007, 935(1): 126-131. [12] Endert G, Martin M L. The effect of chromium impurities on the laser damage threshold of KDP crystals[J]. Kristall und Technik, 1981, 16(5): K65-K66. doi: 10.1002/crat.19810160519 [13] 王波, 王圣来, 房昌水, 等. Fe3+对KDP晶体生长影响的研究[J]. 人工晶体学报, 2005, 34(2):205-208 doi: 10.3969/j.issn.1000-985X.2005.02.003Wang Bo, Wang Shenglai, Fang Changshui, et al. Effects of Fe3+ ion on the growth habit of KDP crystal[J]. Journal of Synthetic Crystals, 2005, 34(2): 205-208 doi: 10.3969/j.issn.1000-985X.2005.02.003 [14] 郭德成. KDP晶体微观缺陷检测及辐照效应研究[D]. 成都: 电子科技大学, 2016Guo Decheng. Radiation effects and micro defects detection of KDP crystals[D]. Chengdu: University of Electronic Science and Technology of China, 2016 [15] Liu Yongqiang, Li Xiangcao, Wu Jian, et al. First-principles studies on the electronic and optical properties of Fe-doped potassium dihydrogen phosphate crystal[J]. Computational Materials Science, 2018, 143: 398-402. doi: 10.1016/j.commatsci.2017.11.035 [16] Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50. doi: 10.1016/0927-0256(96)00008-0 [17] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169-11186. doi: 10.1103/PhysRevB.54.11169 [18] Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5188-5192. doi: 10.1103/PhysRevB.13.5188 [19] Liu C S, Kioussis N, Demos S G, et al. Electron- or hole-assisted reactions of H defects in hydrogen-bonded KDP[J]. Physical Review Letters, 2003, 91: 015505. doi: 10.1103/PhysRevLett.91.015505 [20] Liu C S, Hou C J, Kioussis N, et al. Electronic structure calculations of an oxygen vacancy in KH2PO4[J]. Physical Review B, 2005, 72: 134110. doi: 10.1103/PhysRevB.72.134110 [21] Liu C S, Zhang Q, Kioussis N, et al. Electronic structure calculations of intrinsic and extrinsic hydrogen point defects in KH2PO4[J]. Physical Review B, 2003, 68: 224107. doi: 10.1103/PhysRevB.68.224107 [22] Wang Kunpeng, Fang Changshui, Zhang Jianxiu, et al. First-principles study of interstitial oxygen in potassium dihydrogen phosphate crystals[J]. Physical Review B, 2005, 72: 184105. doi: 10.1103/PhysRevB.72.184105 [23] Nikogosyan D N. Nonlinear optical crystals: a complete survey[M]. New York: Springer, 2005: 119. [24] Dhanaraj P V, Bhagavannarayana G, Rajesh N P. Effect of amino acid additives on crystal growth parameters and properties of ammonium dihydrogen orthophosphate crystals[J]. Materials Chemistry and Physics, 2008, 112(2): 490-495. doi: 10.1016/j.matchemphys.2008.06.003 [25] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. doi: 10.1103/PhysRevLett.77.3865 [26] Heyd J, Scuseria G E, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential[J]. The Journal of Chemical Physics, 2003, 118(18): 8207-8215. doi: 10.1063/1.1564060 [27] Krukau A V, Vydrov O A, Izmaylov A F, et al. Influence of the exchange screening parameter on the performance of screened hybrid functionals[J]. The Journal of Chemical Physics, 2006, 125: 224106. doi: 10.1063/1.2404663 [28] Silvestrelli P L. Van der Waals interactions in DFT made easy by Wannier functions[J]. Physical Review Letters, 2008, 100: 053002. doi: 10.1103/PhysRevLett.100.053002 [29] Silvestrelli P L. Van der Waals interactions in density functional theory using Wannier functions[J]. The Journal of Physical Chemistry A, 2009, 113(17): 5224-5234. doi: 10.1021/jp811138n [30] Andrinopoulos L, Hine N D M, Mostofi A A. Calculating dispersion interactions using maximally localized Wannier functions[J]. The Journal of Chemical Physics, 2011, 135: 154105. doi: 10.1063/1.3647912 [31] 张克从, 王希敏. 非线性光学晶体材料科学[M]. 2版. 北京: 科学出版社, 2005Zhang Kecong, Wang Ximing. Nonlinear optical crystal materials[M]. 2nd ed. Beijing: Science Press, 2005 [32] Sui Tingting, Wan Chubin, Xu Mingxia, et al. Hybrid density functional theory for the stability and electronic properties of Fe-doped cluster defects in KDP crystal[J]. CrystEngComm, 2021, 23(44): 7839-7845. doi: 10.1039/D1CE01140E [33] 杨华. 3d过渡金属氧化物电子结构的第一性原理计算[D]. 天津: 天津大学, 2013Yang Hua. First principles calculations on electronic structure of 3d transition metal oxides[D]. Tianjin: Tianjin University, 2013 [34] 王娟. 基于第一性原理计算的半金属磁性材料电子结构和自旋结构研究[D]. 武汉: 武汉理工大学, 2007Wang Juan. First-principle study on the electronic structure and spin structure of half-metallic ferromagnets[D]. Wuhan: Wuhan University of Technology, 2007 [35] Zheng Haiwu, Zhang Yongjia, Yan Yuli, et al. Experimental observation and theoretical calculation of magnetic properties in Fe-doped cubic SiC nanowires[J]. Carbon, 2014, 78: 288-297. doi: 10.1016/j.carbon.2014.07.005 [36] Duan Yuping, Liu Zhuo, Zhang Yahong, et al. A theoretical study of the dielectric and magnetic responses of Fe-doped α-MnO2 based on quantum mechanical calculations[J]. Journal of Materials Chemistry C, 2013, 1(10): 1990-1994. doi: 10.1039/c3tc00902e [37] Garces N Y, Stevens K T, Halliburton L E, et al. Identification of electron and hole traps in KH2PO4 crystals[J]. Journal of Applied Physics, 2001, 89(1): 47-52. doi: 10.1063/1.1320030 [38] Sui Tingting, Lian Yafei, Xu Mingxia, et al. Stability and electronic structure of hydrogen vacancies in ADP: hybrid DFT with vdW correction[J]. RSC Advances, 2018, 8(13): 6931-6939. doi: 10.1039/C7RA13212C