留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

第一性原理研究Fe及其团簇缺陷对KDP和ADP晶体激光损伤的影响

隋婷婷 魏列宁 徐明霞 许心光 孙洵 巨新

隋婷婷, 魏列宁, 徐明霞, 等. 第一性原理研究Fe及其团簇缺陷对KDP和ADP晶体激光损伤的影响[J]. 强激光与粒子束, 2023, 35: 061003. doi: 10.11884/HPLPB202335.220397
引用本文: 隋婷婷, 魏列宁, 徐明霞, 等. 第一性原理研究Fe及其团簇缺陷对KDP和ADP晶体激光损伤的影响[J]. 强激光与粒子束, 2023, 35: 061003. doi: 10.11884/HPLPB202335.220397
Sui Tingting, Wei Liening, Xu Mingxia, et al. Effects of Fe and its cluster defects on laser damage of KDP and ADP crystals using first-principles[J]. High Power Laser and Particle Beams, 2023, 35: 061003. doi: 10.11884/HPLPB202335.220397
Citation: Sui Tingting, Wei Liening, Xu Mingxia, et al. Effects of Fe and its cluster defects on laser damage of KDP and ADP crystals using first-principles[J]. High Power Laser and Particle Beams, 2023, 35: 061003. doi: 10.11884/HPLPB202335.220397

第一性原理研究Fe及其团簇缺陷对KDP和ADP晶体激光损伤的影响

doi: 10.11884/HPLPB202335.220397
详细信息
    作者简介:

    隋婷婷,suitt@ustb.edu.cn

    通讯作者:

    徐明霞,mxxu@sdu.edu.cn

    巨 新,jux@ustb.edu.cn

  • 中图分类号: O77

Effects of Fe and its cluster defects on laser damage of KDP and ADP crystals using first-principles

  • 摘要: 由于金属杂质离子对晶体损伤性质有不容忽视的影响,受实验条件限制,Fe及其团簇缺陷对晶体的影响机制尚不明确。采用第一性原理的方法,对磷酸二氢钾(KDP)和磷酸二氢铵(ADP)晶体中的Fe及其团簇缺陷进行模拟研究,确定其对晶体结构及光学性质方面的影响。研究发现,Fe进入KDP和ADP晶体中主要以取代P原子形成FeO4基团最稳定,且其稳定形式以Fe3+为主。磁性状态研究发现磁性条件对晶体的结构和能量影响不大,Fe对晶体的损伤主要通过引起200~300 nm范围明显的光学吸收影响损伤阈值。Fe进入晶体中形成团簇缺陷可通过电荷补偿与O空位(VO)复合,几乎不会与OH空位(VOH)复合,团簇缺陷以Fe对晶体结构和性质的影响为主。
  • 图  1  完美KDP和ADP晶体及其FeP缺陷的结构模型

    Figure  1.  Crystal structures of the pristine KDP (a) and ADP (b) as well as the crystals with FeP (c, d) defects

    图  2  Fe替代P原子的结构示意图

    Figure  2.  Schematic diagram of the structure for Fe replacing P atom

    图  3  KDP和ADP晶体中不同磁性状态下FeP缺陷形成能随费米能级的变化

    Figure  3.  Defect formation energies of the charged FeP defects in KDP and ADP as a function of Fermi energy with different magnetic states

    图  4  不同磁性状态下KDP和ADP晶体中FeP缺陷的各化学键引起的微观应力变化

    Figure  4.  Micro-structural stress induced by various chemical bonds of FeP defect with different magnetic states in KDP and ADP crystals

    图  5  KDP和ADP晶体中不同磁性条件下FeP 缺陷电荷态的分态密度图,插图为各状态下缺陷的差分电荷密度图

    Figure  5.  Partial density of states of KDP and ADP crystals with charged FeP defects in different magnetic states, and the insets are electronic charge differences of charged FeP defects with different magnetic states

    图  6  KDP和ADP晶体中不同磁性条件下FeP缺陷电荷态的介电函数虚部ε2 (ω)

    Figure  6.  Imaginary part of the dielectric function ε2 (ω) of charged FeP defects with different magnetic states in KDP and ADP crystals

    表  1  KDP晶体中Fe取代不同位点的模型体系的缺陷形成能

    Table  1.   Defect formation energies of the KDP crystal with Fe in different locations

    locationdefect formation energy/eV
    FeH8.7
    FeP2.74
    FeK12.59
    Fei16.10
    下载: 导出CSV

    表  2  KDP和ADP晶体中Fe团簇缺陷的缺陷形成能

    Table  2.   Defect formation energies of the KDP crystal with Fe atom in different locations

    defectdefect formation energy/eV
    KDPADP
    VOH8.560.15
    FeP+VOH24.3816.41
    下载: 导出CSV

    表  3  KDP和ADP晶体不同磁性条件下Fe−O键的键长变化

    Table  3.   Fe−O bond lengths in KDP and ADP with different magnetic states

    defectsbond length of Fe−O/nm
    KDPADP
    pristine P-O0.1550.155
    NM FeP+0.1620.160
    NM FeP00.1630.162
    NM FeP0.1660.165
    NM FeP2−0.1700.169
    FM FeP+0.1620.160
    FM FeP00.1630.162
    FM FeP0.1660.165
    FM FeP2−0.1910.169
    AFM FeP+0.1620.161
    AFM FeP00.1630.162
    AFM FeP0.1660.165
    AFM FeP2−0.1700.169
    下载: 导出CSV
  • [1] Zaitseva N, Atherton J, Rozsa R, et al. Design and benefits of continuous filtration in rapid growth of large KDP and DKDP crystals[J]. Journal of Crystal Growth, 1999, 197(4): 911-920. doi: 10.1016/S0022-0248(98)01095-1
    [2] Rashkovich L N, Kronsky N V. Influence of Fe3+ and Al3+ ions on the kinetics of steps on the {1 0 0} faces of KDP[J]. Journal of Crystal Growth, 1997, 182(3/4): 434-441.
    [3] Sasaki T, Yokotani A. Growth of large KDP crystals for laser fusion experiments[J]. Journal of Crystal Growth, 1990, 99(1/4): 820-826.
    [4] Eremina T A, Kuznetsov V A, Eremin N N, et al. On the mechanism of impurity influence on growth kinetics and surface morphology of KDP crystals—II: experimental study of influence of bivalent and trivalent impurity ions on growth kinetics and surface morphology of KDP crystals[J]. Journal of Crystal Growth, 2005, 273(3/4): 586-593.
    [5] Pritula I M, Velikhov Y N. Some aspects of UV absorption of NLO KDP crystals[C]//Proceedings of SPIE 3793, Operational Characteristics and Crystal Growth of Nonlinear Optical Materials. 1999: 202-208.
    [6] Salo V I, Kolybayeva M I, Puzikov V M, et al. Effect of impurities on the value of the bulk laser damage threshold of KDP single crystals[C]//Proceedings of SPIE 3359, Optical Diagnostics of Materials and Devices for Opto-, Micro-, and Quantum Electronics 1997. 1998: 549-552.
    [7] Salo V I, Atroschenko L V, Garnov S V, et al. Structure, impurity composition, and laser damage threshold of the subsurface layers in KDP and KD*P single crystals[C]//Proceedings of SPIE 2714, 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials. 1996: 197-201.
    [8] Azarov V V, Atroshchenko L V, Danileiko Y K, et al. Influence of structure defects on the internal optical strength of KDP single crystals[J]. Soviet Journal of Quantum Electronics, 1985, 15(1): 89-90. doi: 10.1070/QE1985v015n01ABEH005862
    [9] Garces N Y, Stevens K T, Halliburton L E, et al. Optical absorption and electron paramagnetic resonance of Fe ions in KDP crystals[J]. Journal of Crystal Growth, 2001, 225(2/4): 435-439.
    [10] Eremina T A, Kuznetsov V A, Okhrimenko T M, et al. Structures of impurity defects in KDP and their influence on quality of crystals[C]//Proceedings of SPIE - The International Society for Optical Engineering. 2003: 153-158.
    [11] Malekfar R, Naghavi N. Raman back-scattering spectroscopy of KDP crystal doped by Fe+3 at low temperatures in the lower hydrogen bonds region[J]. AIP Conference Proceedings, 2007, 935(1): 126-131.
    [12] Endert G, Martin M L. The effect of chromium impurities on the laser damage threshold of KDP crystals[J]. Kristall und Technik, 1981, 16(5): K65-K66. doi: 10.1002/crat.19810160519
    [13] 王波, 王圣来, 房昌水, 等. Fe3+对KDP晶体生长影响的研究[J]. 人工晶体学报, 2005, 34(2):205-208 doi: 10.3969/j.issn.1000-985X.2005.02.003

    Wang Bo, Wang Shenglai, Fang Changshui, et al. Effects of Fe3+ ion on the growth habit of KDP crystal[J]. Journal of Synthetic Crystals, 2005, 34(2): 205-208 doi: 10.3969/j.issn.1000-985X.2005.02.003
    [14] 郭德成. KDP晶体微观缺陷检测及辐照效应研究[D]. 成都: 电子科技大学, 2016

    Guo Decheng. Radiation effects and micro defects detection of KDP crystals[D]. Chengdu: University of Electronic Science and Technology of China, 2016
    [15] Liu Yongqiang, Li Xiangcao, Wu Jian, et al. First-principles studies on the electronic and optical properties of Fe-doped potassium dihydrogen phosphate crystal[J]. Computational Materials Science, 2018, 143: 398-402. doi: 10.1016/j.commatsci.2017.11.035
    [16] Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50. doi: 10.1016/0927-0256(96)00008-0
    [17] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169-11186. doi: 10.1103/PhysRevB.54.11169
    [18] Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5188-5192. doi: 10.1103/PhysRevB.13.5188
    [19] Liu C S, Kioussis N, Demos S G, et al. Electron- or hole-assisted reactions of H defects in hydrogen-bonded KDP[J]. Physical Review Letters, 2003, 91: 015505. doi: 10.1103/PhysRevLett.91.015505
    [20] Liu C S, Hou C J, Kioussis N, et al. Electronic structure calculations of an oxygen vacancy in KH2PO4[J]. Physical Review B, 2005, 72: 134110. doi: 10.1103/PhysRevB.72.134110
    [21] Liu C S, Zhang Q, Kioussis N, et al. Electronic structure calculations of intrinsic and extrinsic hydrogen point defects in KH2PO4[J]. Physical Review B, 2003, 68: 224107. doi: 10.1103/PhysRevB.68.224107
    [22] Wang Kunpeng, Fang Changshui, Zhang Jianxiu, et al. First-principles study of interstitial oxygen in potassium dihydrogen phosphate crystals[J]. Physical Review B, 2005, 72: 184105. doi: 10.1103/PhysRevB.72.184105
    [23] Nikogosyan D N. Nonlinear optical crystals: a complete survey[M]. New York: Springer, 2005: 119.
    [24] Dhanaraj P V, Bhagavannarayana G, Rajesh N P. Effect of amino acid additives on crystal growth parameters and properties of ammonium dihydrogen orthophosphate crystals[J]. Materials Chemistry and Physics, 2008, 112(2): 490-495. doi: 10.1016/j.matchemphys.2008.06.003
    [25] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. doi: 10.1103/PhysRevLett.77.3865
    [26] Heyd J, Scuseria G E, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential[J]. The Journal of Chemical Physics, 2003, 118(18): 8207-8215. doi: 10.1063/1.1564060
    [27] Krukau A V, Vydrov O A, Izmaylov A F, et al. Influence of the exchange screening parameter on the performance of screened hybrid functionals[J]. The Journal of Chemical Physics, 2006, 125: 224106. doi: 10.1063/1.2404663
    [28] Silvestrelli P L. Van der Waals interactions in DFT made easy by Wannier functions[J]. Physical Review Letters, 2008, 100: 053002. doi: 10.1103/PhysRevLett.100.053002
    [29] Silvestrelli P L. Van der Waals interactions in density functional theory using Wannier functions[J]. The Journal of Physical Chemistry A, 2009, 113(17): 5224-5234. doi: 10.1021/jp811138n
    [30] Andrinopoulos L, Hine N D M, Mostofi A A. Calculating dispersion interactions using maximally localized Wannier functions[J]. The Journal of Chemical Physics, 2011, 135: 154105. doi: 10.1063/1.3647912
    [31] 张克从, 王希敏. 非线性光学晶体材料科学[M]. 2版. 北京: 科学出版社, 2005

    Zhang Kecong, Wang Ximing. Nonlinear optical crystal materials[M]. 2nd ed. Beijing: Science Press, 2005
    [32] Sui Tingting, Wan Chubin, Xu Mingxia, et al. Hybrid density functional theory for the stability and electronic properties of Fe-doped cluster defects in KDP crystal[J]. CrystEngComm, 2021, 23(44): 7839-7845. doi: 10.1039/D1CE01140E
    [33] 杨华. 3d过渡金属氧化物电子结构的第一性原理计算[D]. 天津: 天津大学, 2013

    Yang Hua. First principles calculations on electronic structure of 3d transition metal oxides[D]. Tianjin: Tianjin University, 2013
    [34] 王娟. 基于第一性原理计算的半金属磁性材料电子结构和自旋结构研究[D]. 武汉: 武汉理工大学, 2007

    Wang Juan. First-principle study on the electronic structure and spin structure of half-metallic ferromagnets[D]. Wuhan: Wuhan University of Technology, 2007
    [35] Zheng Haiwu, Zhang Yongjia, Yan Yuli, et al. Experimental observation and theoretical calculation of magnetic properties in Fe-doped cubic SiC nanowires[J]. Carbon, 2014, 78: 288-297. doi: 10.1016/j.carbon.2014.07.005
    [36] Duan Yuping, Liu Zhuo, Zhang Yahong, et al. A theoretical study of the dielectric and magnetic responses of Fe-doped α-MnO2 based on quantum mechanical calculations[J]. Journal of Materials Chemistry C, 2013, 1(10): 1990-1994. doi: 10.1039/c3tc00902e
    [37] Garces N Y, Stevens K T, Halliburton L E, et al. Identification of electron and hole traps in KH2PO4 crystals[J]. Journal of Applied Physics, 2001, 89(1): 47-52. doi: 10.1063/1.1320030
    [38] Sui Tingting, Lian Yafei, Xu Mingxia, et al. Stability and electronic structure of hydrogen vacancies in ADP: hybrid DFT with vdW correction[J]. RSC Advances, 2018, 8(13): 6931-6939. doi: 10.1039/C7RA13212C
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  680
  • HTML全文浏览量:  273
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-25
  • 修回日期:  2023-03-09
  • 录用日期:  2023-03-15
  • 网络出版日期:  2023-03-17
  • 刊出日期:  2023-05-06

目录

    /

    返回文章
    返回