10 GW dual-spiral Blumlein pulse forming lines in glycerol medium
-
摘要: 为实现脉冲驱动源的高储能密度和紧凑化,研制了一种以甘油为储能介质,具有中筒螺旋和内筒螺旋的高功率双螺旋Blumlein脉冲形成线(BPFL)。首先,综合绝缘稳定性和储能密度考虑,分别计算BPFL的外线和内线尺寸。利用增加中筒和内筒螺旋的方式增加输出脉宽和形成线阻抗,实现BPFL的紧凑化设计。其次,利用场路协同仿真软件计算形成线内的瞬态场位形变化,结合瞬态场分布分析电压波在形成线内的传输过程,给出外线和内线传输时延的仿真结果。在此基础上,对中筒螺旋匝数、内筒螺旋匝数,以及开关电感等影响输出波形质量的情况进行详细分析。最后,根据仿真优化结果搭建基于双螺旋BPFL的10 GW实验平台。利用脉冲变压器对BPFL充电600 kV,在10 Hz重频条件下运行10 s,于50 Ω负载上产生峰值电压712 kV、半高宽136 ns的准方波脉冲,单脉冲能量与BPFL体积比达到10.8 kJ/m3,脉冲平顶峰峰值抖动为3.8%,与仿真结果吻合度较高。
-
关键词:
- 螺旋脉冲形成线 /
- Blumlein脉冲形成线 /
- 甘油 /
- 长脉冲 /
- 脉冲功率技术
Abstract: To achieve high energy storage density and compact design of pulsed power source, a high power dual-spiral Blumlein pulse forming line (BPFL) using glycerol as energy storage medium is developed. The dual-spiral BPFL has a spiral middle cylinder and a spiral inner cylinder. Firstly, based on the consideration of insulation stability and energy storage density, the outer line and the inner line dimensions of the BPFL are calculated respectively. The output pulse width and line impedance are increased by adding the spiral on the middle cylinder and inner cylinder. Secondly, the transient field configuration in the BPFL is simulated by using the EM/circuit co-simulation software, and the transmission process of voltage wave in the BPFL is analyzed by the transient field distribution. The simulation results of the transmission delay in the outer line and the inner line are carried out. On this basis, the number of spiral turns in the middle cylinder and inner cylinder, and the inductance of the switch that affect the quality of the output waveform are analyzed. Finally, a 10 GW experimental platform based on dual-spiral BPFL is built according to the simulation optimization results. A pulse transformer is used to charge the BPFL to 600 kV. The device operated for 10 s under the frequency of 10 Hz. A quasi-square pulse with peak voltage of 712 kV and full width at half maximum (FWHM) of 136 ns was generated on a 50 Ω load. The ratio of single pulse energy to BPFL volume is 10.8 kJ/m3. And the peak-peak jitter of the pulse flat top is 3.8%, which has a high fitness with the simulation results. -
表 1 不同中筒螺旋匝数输出脉冲特征参数
Table 1. Output pulse characteristic parameters with different Nm
Nm rising edge (10%~90%)/ns FWHM/ns peak voltage/kV peak-peak jitter/% 1 61.3 103.00 891 no flat top 2 50.4 113.70 893 no flat top 3 37.3 132.00 751 4 4 32.4 154.75 726 12 5 35.6 183.00 701 22 表 2 不同内筒螺旋匝数输出脉冲特征参数
Table 2. Output pulse characteristic parameters with different Ni
Ni rising edge (10%~90%)/ns FWHM/ns peak voltage/kV peak-peak jitter/% 1 76.5 120.4 801 no flat top 2 66.5 123.3 814 no flat top 3 50.6 126.8 852 23 4 37.3 132.0 751 4 5 40.2 133.6 770 6 表 3 不同开关电感输出脉冲特征参数(Nm=3, Ni=7)
Table 3. Output pulse characteristic parameters with different switch inductance L (Nm=3, Ni=7)
L/nH rising edge (10%~90%)/ns FWHM/ns peak voltage/kV peak-peak jitter/% 40 29.9 125.6 855 29 80 32.5 130.0 760 17 120 37.3 132.0 751 4 160 40.4 136.0 773 12 200 49.7 139.4 790 17 -
[1] Coogan J J, Davanloo F, Collins C B. Production of high-energy photons from flash X-ray sources powered by stacked Blumlein generators[J]. Review of Scientific Instruments, 1990, 61(5): 1448-1456. doi: 10.1063/1.1141150 [2] Corcoran P, Carboni V, Smith I, et al. Design of an induction voltage adder based on gas-switched pulse forming lines[C]//2005 IEEE Pulsed Power Conference. 2005: 308-313. [3] 伍友成, 杨宇, 何泱, 等. 重复频率低阻抗紧凑Marx脉冲功率源[J]. 强激光与粒子束, 2018, 30:075002 doi: 10.11884/HPLPB201830.170453Wu Youcheng, Yang Yu, He Yang, et al. Compact repetitive Marx generator with low impedance[J]. High Power Laser and Particle Beams, 2018, 30: 075002 doi: 10.11884/HPLPB201830.170453 [4] Su Jiancang, Zhang Xibo, Liu Guozhi, et al. A long-pulse generator based on tesla transformer and pulse-forming network[J]. IEEE Transactions on Plasma Science, 2009, 37(10): 1954-1958. doi: 10.1109/TPS.2009.2025278 [5] 曹绍云, 谭杰, 范植开, 等. 螺旋脉冲形成线实验研究[J]. 强激光与粒子束, 2006, 18(6):1046-1048Cao Shaoyun, Tan Jie, Fan Zhikai, et al. Experimental study on helical Blumlein line[J]. High Power Laser and Particle Beams, 2006, 18(6): 1046-1048 [6] 潘亚峰, 彭建昌, 宋晓欣, 等. 螺旋型Blumlein线的理论研究[J]. 强激光与粒子束, 2006, 18(7):1224-1228Pan Yafeng, Peng Jianchang, Song Xiaoxin, et al. Theoretical research on spiral Blumlein line[J]. High Power Laser and Particle Beams, 2006, 18(7): 1224-1228 [7] 杨建华, 钟辉煌, 舒挺, 等. 水介质Blumlein型螺旋脉冲形成线的研究[J]. 强激光与粒子束, 2005, 17(8):1191-1194Yang Jianhua, Zhong Huihuang, Shu Ting, et al. Water-dielectric Blumlein type of PFL with spiral line[J]. High Power Laser and Particle Beams, 2005, 17(8): 1191-1194 [8] Cheng Xinbing, Liu Jinliang, Qian Baoliang, et al. Effect of the change in the load resistance on the high voltage pulse transformer of the intense electron-beam accelerators[J]. Review of Scientific Instruments, 2009, 80: 115110. doi: 10.1063/1.3263902 [9] Yang Jianhua, Zhang Zicheng, Yang Hanwu, et al. Compact intense electron-beam accelerators based on high energy density liquid pulse forming lines[J]. Matter and Radiation at Extremes, 2018, 3(6): 278-292. doi: 10.1016/j.mre.2018.07.002 [10] 杨霄, 杨建华, 钱宝良, 等. 甘油介质在同轴形成线中的击穿特性研究[J]. 强激光与粒子束, 2016, 28:015017 doi: 10.11884/HPLPB201628.015017Yang Xiao, Yang Jianhua, Qian Baoliang, et al. Breakdown characteristics study of glycerol medium in coaxial pulse forming line[J]. High Power Laser and Particle Beams, 2016, 28: 015017 doi: 10.11884/HPLPB201628.015017 [11] Yang X, Yang J H, Cheng X B, et al. The possibility of using glycerin as the dielectric in pulse forming lines[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(2): 339-345. doi: 10.1109/TDEI.2018.007620 [12] 潘亚峰, 彭建昌, 宋晓欣, 等. 一种螺旋型Blumlein线的阻抗特性分析[J]. 强激光与粒子束, 2009, 21(9):1435-1440Pan Yafeng, Peng Jianchang, Song Xiaoxin, et al. Impedance characteristics of spiral Blumlein line[J]. High Power Laser and Particle Beams, 2009, 21(9): 1435-1440 [13] Zhang Yu, Liu Jinliang, Fan Xuliang, et al. Characteristic impedance and capacitance analysis of Blumlein type pulse forming line of accelerator based on tape helix[J]. Review of Scientific Instruments, 2011, 82: 104701. doi: 10.1063/1.3643791 [14] Cheng X B, Liu J L, Qian B L, et al. Effect of transition section between the main switch and middle cylinder of Blumlein pulse forming line on the diode voltage of intense electron-beam accelerators[J]. Laser and Particle Beams, 2009, 27(3): 439-447. doi: 10.1017/S0263034609990103 [15] Lehr J, Ron P. Pulse forming lines[M]//Lehr J, Ron P. Foundations of Pulsed Power Technology. New York: IEEE, 2017. [16] 潘亚峰, 丁臻捷, 樊亚军. 具有螺旋内筒和螺旋外筒的Blumlein线[J]. 强激光与粒子束, 2014, 26:115007 doi: 10.11884/HPLPB201426.115007Pan Yafeng, Ding Zhenjie, Fan Yajun, et al. Coaxial Blumlein line with spiral inner and outer cylinders[J]. High Power Laser and Particle Beams, 2014, 26: 115007 doi: 10.11884/HPLPB201426.115007 [17] Yang Xiao, Yang Jianhua, Cheng Xinbing, et al. Bubble deformation in the repetitive pulsed glycerin pulse forming line and its relation with the liquid breakdown[J]. AIP Advances, 2019, 9: 115102. doi: 10.1063/1.5122888 [18] 刘金亮, 怀武龙, 霍哲, 等. 一种测量脉冲高电压的电容分压器[J]. 强激光与粒子束, 2000, 12(1):122-124Liu Jinliang, Huai Wulong, Huo Zhe, et al. A compact capacitive divider for measuring pulse high voltage[J]. High Power Laser and Particle Beams, 2000, 12(1): 122-124