留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种MV级峰化电容一体化电容分压器的研制

李奇胜 李俊娜 李楚男 王永亮 龚渝涵 刘建

李奇胜, 李俊娜, 李楚男, 等. 一种MV级峰化电容一体化电容分压器的研制[J]. 强激光与粒子束, 2024, 36: 095003. doi: 10.11884/HPLPB202436.230218
引用本文: 李奇胜, 李俊娜, 李楚男, 等. 一种MV级峰化电容一体化电容分压器的研制[J]. 强激光与粒子束, 2024, 36: 095003. doi: 10.11884/HPLPB202436.230218
Li Qisheng, Li Junna, Li Chu’nan, et al. Development of a MV level peaking capacitor integrated capacitor voltage divider[J]. High Power Laser and Particle Beams, 2024, 36: 095003. doi: 10.11884/HPLPB202436.230218
Citation: Li Qisheng, Li Junna, Li Chu’nan, et al. Development of a MV level peaking capacitor integrated capacitor voltage divider[J]. High Power Laser and Particle Beams, 2024, 36: 095003. doi: 10.11884/HPLPB202436.230218

一种MV级峰化电容一体化电容分压器的研制

doi: 10.11884/HPLPB202436.230218
基金项目: 国家自然科学基金项目(52177157)
详细信息
    作者简介:

    李奇胜,3121304202@stu.xjtu.edu.cn

    通讯作者:

    李俊娜,uvlina@126.com

  • 中图分类号: TM83

Development of a MV level peaking capacitor integrated capacitor voltage divider

  • 摘要: 峰化电容器由于结构紧凑一般采用间接测量其承受的电压,而峰化电容电压的直接测量一直是难以解决的问题。为了解决该问题,以峰化电容器为基础,研制了一种新型结构的电阻补偿式自积分型峰化电容一体化电容分压器。其次,根据分压器的新型结构分析了峰化电容一体化电容分压器的理论分压比,给出了理论分压比计算公式,分析了影响低频响应的因素并进行了电路仿真验证。同时,开展了方波标定实验,得到了两个探头的分压比及响应时间,且探头响应时间均小于6.2 ns。此外,为了得到更准确的分压比并验证正常工作状态下该一体化电容分压器分压比的稳定性,进行了高压在线标定实验,得到了1#探头分压比为11071,2#探头分压比为15148。且在更高电压等级下,该电容分压器探头的测量相对误差较小,分压比稳定性良好。
  • 图  1  峰化电容一体化电容分压器结构图

    Figure  1.  Structure diagram of peaking capacitor integrated capacitor voltage divider

    图  2  电容分压器理论电容分布分析图

    Figure  2.  Theoretical capacitance distribution analysis diagram of capacitive voltage divider

    图  3  电容分压器理论分压比电路图

    Figure  3.  Circuit diagram of theoretical voltage division ratio simulation of capacitive voltage divider

    图  4  两电压探头仿真方波响应波形图

    Figure  4.  Simulated square wave response waveform of two voltage probes

    图  5  方波标定系统示意图

    Figure  5.  Schematic diagram of square wave calibration system

    图  6  两电压探头的方波响应输出波形

    Figure  6.  Output waveform of square wave response

    图  7  实验平台示意图

    Figure  7.  Schematic diagram of the experimental platform

    图  8  高压在线标定的典型波形图

    Figure  8.  Typical waveforms of high voltage online calibration

    图  9  不同电压等级下探头的分压比

    Figure  9.  Voltage division ratio of the probes at different voltage levels

    图  10  峰化电容器沿面电场分布图

    Figure  10.  Simulated electric field distribution of peaking capacitor

    图  11  小气隙局部放电示意图

    Figure  11.  Schematic diagram of small air gap partial discharge

    图  12  考虑等离子体影响前后的各层结构电容分布

    Figure  12.  Capacitance distribution of each layer structure before and after considering the influence of plasma

    图  13  标定实验平台示意图

    Figure  13.  Schematic diagram of calibration experimental platform

    表  1  低压臂电容及补偿电阻实测值

    Table  1.   Measured value of low voltage arm capacitance and compensation resistor

    probe number compensation resistance/kΩ low voltage arm capacitance/nF R1C2/μs
    1# 2.395 3.343 8.2
    2# 2.412 4.846 11.7
    下载: 导出CSV

    表  2  电压探头对不同脉宽信号的响应仿真结果

    Table  2.   Simulation results of voltage probe response to different pulse width signals

    pulse width τ R1C2/τ flat top descent/% R1C2/τ flat top descent/%
    1# 2#
    100 82.0 1.0 117.0 0.8
    500 16.4 5.1 23.4 3.7
    1000 8.2 10.0 11.7 6.6
    下载: 导出CSV

    表  3  两探头的响应时间与分压比

    Table  3.   Response time and division ratio of two probes

    probe number source signal leading time/ns measuring signal leading time/ns response time/ns voltage division ratio
    1# 12.00 12.80 4.45 13444
    2# 11.52 13.12 6.28 17314
    下载: 导出CSV

    表  4  更高等级峰化电容耐受电压测量结果

    Table  4.   Response time and division ratio of two probes

    Marx main
    circuit charging
    voltage/kV
    peak capacitance
    voltage measured
    by 1# probe/kV
    peak capacitance
    voltage measured by
    2# probe/kV
    2# probe actual
    measurement
    signal/V
    2# probe voltage
    division
    ratio
    2# probe average
    voltage division
    ratio
    30 496.42 495.25 32.69 15185 15283
    35 583.03 579.42 38.25 15242 15283
    40 671.22 666.02 43.97 15265 15283
    45 779.68 779.02 51.23 15219 15283
    48 825.21 806.31 53.23 15502 15283
    下载: 导出CSV
  • [1] 高景明, 刘永贵, 杨建华. 一种电容补偿型高压电容分压器的设计[J]. 高电压技术, 2007, 33(6):76-79 doi: 10.3969/j.issn.1003-6520.2007.06.019

    Gao Jingming, Liu Yonggui, Yang Jianhua. Design of capacitance-compensated capacitive divider for high-voltage pulse measurement[J]. High Voltage Engineering, 2007, 33(6): 76-79 doi: 10.3969/j.issn.1003-6520.2007.06.019
    [2] Yu Binxiong, Li Rui, Su Jiancang, et al. Analysis of the match problem of a capacitive voltage divider with a long measurement cable[J]. Measurement Science and Technology, 2017, 28: 095009. doi: 10.1088/1361-6501/aa7c2b
    [3] 卫兵, 傅贞, 王玉娟, 等. 脉冲功率装置中电容分压器的设计和应用[J]. 高电压技术, 2007, 33(12):39-43 doi: 10.3969/j.issn.1003-6520.2007.12.010

    Wei Bing, Fu Zhen, Wang Yujuan, et al. Design and performance of capacitive divider for high-voltage pulse measurement[J]. High Voltage Engineering, 2007, 33(12): 39-43 doi: 10.3969/j.issn.1003-6520.2007.12.010
    [4] Ekdahl C A. Voltage and current sensors for a high-density z-pinch experiment[J]. Review of Scientific Instruments, 1980, 51(12): 1645-1648. doi: 10.1063/1.1136140
    [5] 张永辉, 常安碧, 甘延青, 等. 一种同轴高压电容分压器的设计[J]. 高电压技术, 2003, 29(1):37-38,41 doi: 10.3969/j.issn.1003-6520.2003.01.017

    Zhang Yonghui, Chang Anbi, Gan Yanqing, et al. Design of a high voltage coaxial capacitive voltage divider[J]. High Voltage Engineering, 2003, 29(1): 37-38,41 doi: 10.3969/j.issn.1003-6520.2003.01.017
    [6] 潘洋, 严萍, 袁伟群. 纳秒脉冲电容分压器测量系统分析及波形重建[J]. 高电压技术, 2005, 31(2):53-55,75 doi: 10.3969/j.issn.1003-6520.2005.02.021

    Pan Yang, Yan Ping, Yuan Weiqun. Analysis and waveform reconstruction of nanosecond pulse voltage divider measurement system[J]. High Voltage Engineering, 2005, 31(2): 53-55,75 doi: 10.3969/j.issn.1003-6520.2005.02.021
    [7] 卫兵, 方东凡, 卿燕玲, 等. 亚纳秒脉冲高电压测量探头[J]. 强激光与粒子束, 2012, 24(6):1497-1501 doi: 10.3788/HPLPB20122406.1497

    Wei Bing, Fang Dongfan, Qing Yanling, et al. D-dot monitor for sub-nanosecond high voltage pulse measurement[J]. High Power Laser and Particle Beams, 2012, 24(6): 1497-1501 doi: 10.3788/HPLPB20122406.1497
    [8] 王亮平, 郭宁, 李岩, 等. 测量强光一号负载电压的电容分压器[J]. 强激光与粒子束, 2010, 22(3):696-700 doi: 10.3788/HPLPB20102203.0696

    Wang Liangping, Guo Ning, Li Yan, et al. Capacitive divider for voltage measurement of diode load on Qiangguang-I accelerator[J]. High Power Laser and Particle Beams, 2010, 22(3): 696-700 doi: 10.3788/HPLPB20102203.0696
    [9] 张璐, 齐卫东, 黄国强, 等. 标称3 MV快速暂态过电压测量用传感器研制[J]. 高电压技术, 2016, 42(6):1811-1818

    Zhang Lu, Qi Weidong, Huang Guoqiang, et al. Voltage sensor development for VFTO measurement with nominal voltage of 3 MV[J]. High Voltage Engineering, 2016, 42(6): 1811-1818
    [10] 卫兵, 李勇, 康军军, 等. 测量微秒量级脉宽方波信号的电容分压器[J]. 强激光与粒子束, 2023, 35:025002 doi: 10.11884/HPLPB202335.220150

    Wei Bing, Li Yong, Kang Junjun, et al. Capacitive divider for measuring μs width square wave pulse[J]. High Power Laser and Particle Beams, 2023, 35: 025002 doi: 10.11884/HPLPB202335.220150
    [11] 卫兵, 龚伯仪, 王治, 等. 自积分式电容分压器的频率响应特性[J]. 强激光与粒子束, 2018, 30:045006 doi: 10.11884/HPLPB201830.170369

    Wei Bing, Gong Boyi, Wang Zhi, et al. Frequency response characteristics of self-integralting capacitive divider[J]. High Power Laser and Particle Beams, 2018, 30: 045006 doi: 10.11884/HPLPB201830.170369
    [12] Brady M M, Dedrick K G. High-voltage pulse measurement with a precision capacitive voltage divider[J]. Review of Scientific Instruments, 1962, 33(12): 1421-1428. doi: 10.1063/1.1717792
    [13] Boggs S A, Fujimoto N. Techniques and instrumentation for measurement of transients in gas-insulated switchgear[J]. IEEE Transactions on Electrical Insulation, 1984, EI-19(2): 87-92. doi: 10.1109/TEI.1984.298778
    [14] 刘金亮, 怀武龙, 钟辉煌. 脉冲高电压的频率对电容分压器性能的影响[J]. 国防科技大学学报, 2000, 22(S1):10-13 doi: 10.3969/j.issn.1001-2486.2000.z1.003

    Liu Jinliang, Huai Wulong, Zhong Huihuang. Effect of high voltage pulse’s frequency to performance of capacitive divider[J]. Journal of National University of Defense Technology, 2000, 22(S1): 10-13 doi: 10.3969/j.issn.1001-2486.2000.z1.003
    [15] 陈昌渔, 王昌长, 高胜友. 高电压试验技术[M]. 4版. 北京: 清华大学出版社, 2017: 153-154

    Chen Changyu, Wang Changchang, Gao Shengyou. High-voltage testing technology[M]. 4th ed. Beijing: Tsinghua University Press, 2017: 153-154
    [16] 贺元吉. 一种测量亚ns级脉冲高电压的电容分压器[J]. 哈尔滨理工大学学报, 2004, 9(3):41-43 doi: 10.3969/j.issn.1007-2683.2004.03.013

    He Yuanji. Sub-nanosecond capacitive voltage divider for high-voltage pulse measurement[J]. Journal of Harbin University of Science and Technology, 2004, 9(3): 41-43 doi: 10.3969/j.issn.1007-2683.2004.03.013
    [17] 邱爱慈. 脉冲功率技术应用[M]. 西安: 陕西科学技术出版社, 2016: 296-297

    Qiu Aici. Pulse power technology application[M]. Xi’an: Shaanxi Science and Technology Press, 2016: 296-297
    [18] 施围, 邱毓昌, 张乔根. 高电压工程基础[M]. 北京: 机械工业出版社, 2006: 30

    Shi Wei, Qiu Yuchang, Zhang Qiaogen. High voltage engineering foundation[M]. Beijing: China Machine Press, 2006: 30
    [19] Yu Minghao, Takahashi Y, Kihara H, et al. Thermochemical nonequilibrium 2D modeling of nitrogen inductively coupled plasma flow[J]. Plasma Science and Technology, 2015, 17(9): 749-760. doi: 10.1088/1009-0630/17/9/06
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  217
  • HTML全文浏览量:  110
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-14
  • 修回日期:  2024-05-29
  • 录用日期:  2024-05-29
  • 网络出版日期:  2024-06-04
  • 刊出日期:  2024-08-16

目录

    /

    返回文章
    返回