留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率微波信号对PIN限幅器温度分布的影响特性

高铭萱 张洋 张军

高铭萱, 张洋, 张军. 高功率微波信号对PIN限幅器温度分布的影响特性[J]. 强激光与粒子束, 2024, 36: 043022. doi: 10.11884/HPLPB202436.230236
引用本文: 高铭萱, 张洋, 张军. 高功率微波信号对PIN限幅器温度分布的影响特性[J]. 强激光与粒子束, 2024, 36: 043022. doi: 10.11884/HPLPB202436.230236
Gao Mingxuan, Zhang Yang, Zhang Jun. Influence of high-power microwave signal on temperature distribution of PIN limiter[J]. High Power Laser and Particle Beams, 2024, 36: 043022. doi: 10.11884/HPLPB202436.230236
Citation: Gao Mingxuan, Zhang Yang, Zhang Jun. Influence of high-power microwave signal on temperature distribution of PIN limiter[J]. High Power Laser and Particle Beams, 2024, 36: 043022. doi: 10.11884/HPLPB202436.230236

高功率微波信号对PIN限幅器温度分布的影响特性

doi: 10.11884/HPLPB202436.230236
基金项目: 湖南省科技创新计划项目(2021RC2065);国防科技大学学校科研计划项目(ZK22-42);湖南省自然科学基金项目(2023JJ40675)
详细信息
    作者简介:

    高铭萱,244736581@qq.com

    通讯作者:

    张 洋,16103271g@connect.polyu.hk

  • 中图分类号: TN385

Influence of high-power microwave signal on temperature distribution of PIN limiter

  • 摘要: 针对高功率微波波形参数对限幅器温度分布特性的影响,基于双级PIN限幅器的场路协同仿真模型对微波脉冲幅值、频率对温度分布的影响展开了仿真研究。结果表明:微波脉冲幅值、频率的提升会使双级PIN限幅器中PIN二极管的高温区域分布向P区拓展、高温区域分布范围扩大;相对而言,微波脉冲幅值对温度分布的影响更为显著,频率对温度分布的影响相对较小。
  • 图  1  双级PIN限幅器场路协同仿真模型

    Figure  1.  Field-circuit collaborative simulation model of two-stage PIN limiter

    图  2  第一级PIN二极管结构及掺杂情况

    Figure  2.  Structure and doping concentration of the first stage PIN diode

    图  3  第二级PIN二极管结构及掺杂情况

    Figure  3.  Structure and doping concentration of the second stage PIN diode

    图  4  限幅器达到Si熔点时刻前后两级PIN二极管内部温度分布曲线

    Figure  4.  Curve of the two PIN diodes’ temperature distribution inside the limiter at the moment its maximum temperature reaches the melting point of silicon

    图  5  不同电压幅值下温度分布情况(局部)

    Figure  5.  Temperature distribution under different amplitude (local)

    图  6  不同频率下的温度分布情况(局部)

    Figure  6.  Temperature distribution under different frequency (local)

    图  7  不同幅值信号作用下达到Si熔点时刻的归一化耗散功率分布(局部)

    Figure  7.  Normalized dissipation power distribution under the action of signals with different amplitude at the moment the limiter’s maximum temperature reaches the melting point of silicon (local)

    图  8  一个信号周期中不同时刻的电子、空穴浓度分布

    Figure  8.  Electron and hole concentration distribution at different moments in a signal cycle

    图  9  不同时刻的电场强度分布

    Figure  9.  Electric field distribution at different moment in the signal cycle

    图  10  不同时刻的电流密度分布

    Figure  10.  Current density distribution at different moment in the signal cycle

    图  11  不同幅值信号作用下达到Si熔点时刻的归一化电场强度分布(局部)

    Figure  11.  Normalized electric field distribution under the action of signals with different amplitude at the moment the limiter’s maximum temperature reaches the melting point of silicon (local)

    表  1  不同电压幅值信号作用下的热区分布范围

    Table  1.   Width of high-temperature area under different amplitude

    voltage/V width of high-temperature area/μm
    400 6.6
    500 6.9
    600 7.3
    700 7.6
    800 7.9
    900 8.1
    1000 8.3
    下载: 导出CSV
  • [1] Caverly R H, Hiller G. Understanding and modeling the non-monotonic attenuation behavior of PIN limiter diodes[C]//Proceedings of the IEEE MTT-S International Microwave Symposium Digest. 1998: 849-852.
    [2] 胡凯, 李天明, 汪海洋, 等. 多级PIN限幅器高功率微波效应研究[J]. 强激光与粒子束, 2014, 26:063015 doi: 10.3788/HPLPB20142606.63015

    Hu Kai, Li Tianming, Wang Haiyang, et al. High power microwave effect of multi-stage PIN limiter[J]. High Power Laser and Particle Beams, 2014, 26: 063015 doi: 10.3788/HPLPB20142606.63015
    [3] 赵振国, 周海京, 马弘舸, 等. 微波脉冲频率与重频对限幅器热损伤效应的影响[J]. 强激光与粒子束, 2015, 27:103239 doi: 10.11884/HPLPB201527.103239

    Zhao Zhenguo, Zhou Haijing, Ma Hongge, et al. Influence of frequency and microwave repetition rate on thermal damage process of PIN limiter[J]. High Power Laser and Particle Beams, 2015, 27: 103239 doi: 10.11884/HPLPB201527.103239
    [4] 易世鹏, 杜正伟, 赵景涛, 等. 频率对PIN限幅器微波脉冲热损毁效应的影响[J]. 电波科学学报, 2019, 34(4):479-484

    Yi Shipeng, Du Zhengwei, Zhao Jingtao, et al. The influence of frequency on the thermal burnout effect of a PIN diode limiter[J]. Chinese Journal of Radio Science, 2019, 34(4): 479-484
    [5] 王明, 马弘舸. 组合脉冲内间隔对限幅器热损伤效应的影响[J]. 强激光与粒子束, 2018, 30:063002 doi: 10.11884/HPLPB201830.170426

    Wang Ming, Ma Hongge. Influence of pulse interval on thermal damage process of PIN limiter[J]. High Power Laser and Particle Beams, 2018, 30: 063002 doi: 10.11884/HPLPB201830.170426
    [6] 赵振国, 马弘舸, 赵刚, 等. PIN限幅器微波脉冲热损伤温度特性[J]. 强激光与粒子束, 2013, 25(7):1741-1746 doi: 10.3788/HPLPB20132507.1741

    Zhao Zhenguo, Ma Hongge, Zhao Gang, et al. Characteristics of temperature during PIN limiter thermal damage caused by microwaves[J]. High Power Laser and Particle Beams, 2013, 25(7): 1741-1746 doi: 10.3788/HPLPB20132507.1741
    [7] 张永战, 孟凡宝, 赵刚. Ⅰ层厚度对限幅器热损伤效应的影响[J]. 强激光与粒子束, 2017, 29:093002 doi: 10.11884/HPLPB201729.170087

    Zhang Yongzhan, Meng Fanbao, Zhao Gang. Influence of I layer thickness on thermal damage process of PIN limiter[J]. High Power Laser and Particle Beams, 2017, 29: 093002 doi: 10.11884/HPLPB201729.170087
    [8] 陈自东, 秦风, 赵景涛, 等. 高功率微波作用下限幅器尖峰泄漏特性[J]. 强激光与粒子束, 2020, 32:103014 doi: 10.11884/HPLPB202032.200097

    Chen Zidong, Qin Feng, Zhao Jingtao, et al. Spike leakage characteristic of limiter irradiated by high power microwave[J]. High Power Laser and Particle Beams, 2020, 32: 103014 doi: 10.11884/HPLPB202032.200097
    [9] 李吉浩. 高功率脉冲对PIN限幅器的毁伤效应研究[J]. 微波学报, 2012, 28(s3):315-318

    Li Jihao. Research on HPM pulse damage effect of PIN limiter[J]. Journal of Microwaves, 2012, 28(s3): 315-318
    [10] 袁月乾, 陈自东, 马弘舸, 等. PIN限幅器的高功率微波单脉冲效应研究[J]. 强激光与粒子束, 2020, 32:063003 doi: 10.11884/HPLPB202032.190174

    Yuan Yueqian, Chen Zidong, Ma Hongge, et al. High power microwave effect of PIN limiter induced by single pulse[J]. High Power Laser and Particle Beams, 2020, 32: 063003 doi: 10.11884/HPLPB202032.190174
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  192
  • HTML全文浏览量:  55
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-04
  • 修回日期:  2023-11-09
  • 录用日期:  2023-11-23
  • 网络出版日期:  2023-12-09
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回