留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于变分模态分解和自动编码器的PIN二极管温度特性预测

张洋 周扬 张泽海 阳福香 葛行军

张洋, 周扬, 张泽海, 等. 基于变分模态分解和自动编码器的PIN二极管温度特性预测[J]. 强激光与粒子束, 2024, 36: 043013. doi: 10.11884/HPLPB202436.230237
引用本文: 张洋, 周扬, 张泽海, 等. 基于变分模态分解和自动编码器的PIN二极管温度特性预测[J]. 强激光与粒子束, 2024, 36: 043013. doi: 10.11884/HPLPB202436.230237
Zhang Yang, Zhou Yang, Zhang Zehai, et al. PIN diode temperature characteristics prediction based on variational mode decomposition and autoencoder[J]. High Power Laser and Particle Beams, 2024, 36: 043013. doi: 10.11884/HPLPB202436.230237
Citation: Zhang Yang, Zhou Yang, Zhang Zehai, et al. PIN diode temperature characteristics prediction based on variational mode decomposition and autoencoder[J]. High Power Laser and Particle Beams, 2024, 36: 043013. doi: 10.11884/HPLPB202436.230237

基于变分模态分解和自动编码器的PIN二极管温度特性预测

doi: 10.11884/HPLPB202436.230237
基金项目: 湖南省科技创新计划项目(2021RC2065);国防科技大学学校科研计划项目(ZK22-42);湖南省自然科学基金项目(2023JJ40675)
详细信息
    作者简介:

    张 洋,16103271g@connect.polyu.hk

  • 中图分类号: TN385

PIN diode temperature characteristics prediction based on variational mode decomposition and autoencoder

  • 摘要: 提出融合变分模态分解(VMD)和自编码器的预测方法,将温升特性曲线分解成若干个子信号分量,其中包含高频的波动量、中间量和低频的趋势量,然后利用自编码器对每个分量进行预测,最后将分量的预测值相加,从而实现对PIN二极管温升特性曲线的精准预测。通过与多种机器学习方法的对比验证了结合VMD分解可有效提升预测精度,同时也验证了自编码器在特性曲线拟合上的优势。
  • 图  1  结合VMD分解和自动编码器的算法流程图

    Figure  1.  Flowchart of the proposed algorithm by combining decomposition and autoencoder

    图  2  PIN二极管的温度特性曲线

    Figure  2.  Temperature characteristic curve of the PIN diode

    图  3  自动编码器的训练过程和结构

    Figure  3.  Training process and structure of the autoencoder

    图  4  自编码器采用及没有采用VMD分解预测结果对比

    Figure  4.  Predicted curves comparison with and without VMD decomposition

    表  1  实验结果

    Table  1.   Results of experiments

    network possibility of R2 > 0.9
    without VMD with VMD
    autoencoder 0.76 0.91
    1DCNN 0.73 0.80
    SVM 0.73 0.75
    MLP 0.68 0.73
    GRP 0.82 0.86
    下载: 导出CSV
  • [1] 袁月乾, 陈自东, 马弘舸, 等. PIN限幅器的高功率微波单脉冲效应研究[J]. 强激光与粒子束, 2020, 32:063003 doi: 10.11884/HPLPB202032.190174

    Yuan Yueqian, Chen Zidong, Ma Hongge, et al. High power microwave effect of PIN limiter induced by single pulse[J]. High Power Laser and Particle Beams, 2020, 32: 063003 doi: 10.11884/HPLPB202032.190174
    [2] 王明, 马弘舸. 组合脉冲内间隔对限幅器热损伤效应的影响[J]. 强激光与粒子束, 2018, 30:063002 doi: 10.11884/HPLPB201830.170426

    Wang Ming, Ma Hongge. Influence of pulse interval on thermal damage process of PIN limiter[J]. High Power Laser and Particle Beams, 2018, 30: 063002 doi: 10.11884/HPLPB201830.170426
    [3] Bera S C, Bharadhwaj P S. Insight into PIN diode behaviour leads to improved control circuit[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2005, 52(1): 1-4. doi: 10.1109/TCSII.2004.839537
    [4] 张永战, 孟凡宝, 赵刚. Ⅰ层厚度对限幅器热损伤效应的影响[J]. 强激光与粒子束, 2017, 29:093002 doi: 10.11884/HPLPB201729.170087

    Zhang Yongzhan, Meng Fanbao, Zhao Gang. Influence of I layer thickness on thermal damage process of PIN limiter[J]. High Power Laser and Particle Beams, 2017, 29: 093002 doi: 10.11884/HPLPB201729.170087
    [5] 赵振国, 周海京, 马弘舸, 等. 微波脉冲频率与重频对限幅器热损伤效应的影响[J]. 强激光与粒子束, 2015, 27:103239 doi: 10.11884/HPLPB201527.103239

    Zhao Zhenguo, Zhou Haijing, Ma Hongge, et al. Influence of frequency and microwave repetition rate on thermal damage process of PIN limiter[J]. High Power Laser and Particle Beams, 2015, 27: 103239 doi: 10.11884/HPLPB201527.103239
    [6] Ko K, Lee J K, Kang M, et al. Prediction of process variation effect for ultrascaled GAA vertical FET devices using a machine learning approach[J]. IEEE Transactions on Electron Devices, 2019, 66(10): 4474-4477. doi: 10.1109/TED.2019.2937786
    [7] Liang Wei, Yang Xuejiao, Miao Meng, et al. Novel ESD compact modeling methodology using machine learning techniques for snapback and non-snapback ESD devices[J]. IEEE Transactions on Device and Materials Reliability, 2021, 21(4): 455-464. doi: 10.1109/TDMR.2021.3116599
    [8] Wang Jing, Kim Y H, Ryu J, et al. Artificial neural network-based compact modeling methodology for advanced transistors[J]. IEEE Transactions on Electron Devices, 2021, 68(3): 1318-1325. doi: 10.1109/TED.2020.3048918
    [9] Yang Qihang, Qi Guodong, Gan Weizhuo, et al. Transistor compact model based on multigradient neural network and its application in SPICE circuit simulations for gate-all-around Si Cold source FETs[J]. IEEE Transactions on Electron Devices, 2021, 68(9): 4181-4188. doi: 10.1109/TED.2021.3093376
    [10] Mehta K, Wong H Y. Prediction of FinFET current-voltage and capacitance-voltage curves using machine learning with Autoencoder[J]. IEEE Electron Device Letters, 2021, 42(2): 136-139. doi: 10.1109/LED.2020.3045064
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  89
  • HTML全文浏览量:  47
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-28
  • 修回日期:  2023-11-06
  • 录用日期:  2023-09-28
  • 网络出版日期:  2023-12-28
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回