留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微波脉冲大气击穿临界场强估计

杨浩 黄诺慈 刘星辰 郑强林 鲍向阳 闫二艳

杨浩, 黄诺慈, 刘星辰, 等. 微波脉冲大气击穿临界场强估计[J]. 强激光与粒子束, 2024, 36: 043031. doi: 10.11884/HPLPB202436.230248
引用本文: 杨浩, 黄诺慈, 刘星辰, 等. 微波脉冲大气击穿临界场强估计[J]. 强激光与粒子束, 2024, 36: 043031. doi: 10.11884/HPLPB202436.230248
Yang Hao, Huang Nuoci, Liu Xingchen, et al. Critical field strength estimation for microwave pulse atmospheric breakdown[J]. High Power Laser and Particle Beams, 2024, 36: 043031. doi: 10.11884/HPLPB202436.230248
Citation: Yang Hao, Huang Nuoci, Liu Xingchen, et al. Critical field strength estimation for microwave pulse atmospheric breakdown[J]. High Power Laser and Particle Beams, 2024, 36: 043031. doi: 10.11884/HPLPB202436.230248

微波脉冲大气击穿临界场强估计

doi: 10.11884/HPLPB202436.230248
基金项目: 国家自然科学基金项目(62001442)
详细信息
    作者简介:

    杨 浩,mushui9@qq.com

    通讯作者:

    闫二艳,yaneryan_2002@163.com

  • 中图分类号: O531

Critical field strength estimation for microwave pulse atmospheric breakdown

  • 摘要: 针对高功率微波在大气传输中可能出现的击穿现象,研究了脉冲序列中首次击穿时的延迟脉冲数,发现其与种子电子、脉冲击穿概率以及微波场强密切相关。研究发现,微波场强可通过作用于种子电子间接影响脉冲击穿概率和延迟脉冲数,由此提出利用延迟脉冲数估计微波击穿临界场强的方法,并定义在脉冲击穿概率大于一定值时的微波临界场强作为击穿阈值。推导了脉冲击穿概率的估计公式,并对估计量的性能进行了分析,随后利用S波段微波大气击穿模拟装置开展了实验验证。实验结果表明,在一定范围内,重复频率微波脉冲击穿延迟脉冲数仅与种子电子产生率和脉宽成反比,能用于估计脉冲击穿概率,进而给出击穿临界场强。
  • 图  1  不同重频条件下的脉冲击穿累积概率密度分布

    Figure  1.  Cumulative probability density function of microwave pulse breakdown under different repetitive frequency

    图  2  不同脉宽条件下的脉冲击穿累积概率密度分布

    Figure  2.  Cumulative probability density function of microwave pulse breakdown under different pulse width

    表  1  实验条件及结果

    Table  1.   Results of experiments

    No. pressure/
    Pa
    electric intensity/
    (kV/cm)
    radioactive
    source distance
    repetitive
    frequency/Hz
    pulse
    width/ns
    p k $ \bar {{n}} $ $ \hat {{p}} $
    A1 8000 1.87 far 20 20000 0.006 13 73.1 0.0055
    A2 8000 1.87 near 20 20000 0.03 20 33.4 0.030
    B1 1000 0.92 none 20 20000 0.04 20 27.7 0.036
    B2 1000 1.29 none 20 20000 0.5 20 2.3 0.43
    C1 300 0.92 none 5 2000 0.005 13 102.5 0.0048
    C2 300 0.92 none 50 2000 0.005 14 92.7 0.0056
    C3 300 0.92 none 500 2000 0.005 12 78.6 0.0047
    D1 300 1.29 none 50 20 0 0 0 0
    D2 300 1.29 none 50 200 0.003 11 113.2 0.0036
    D3 300 1.29 none 50 2000 0.03 20 35.3 0.028
    D4 300 1.29 none 50 20000 1 20 1 1
    下载: 导出CSV
  • [1] Barker R J, Schamiloglu E. 高功率微波源与技术[M]. 刘国治, 周传明, 译. 北京: 清华大学出版社, 2005: 154-158

    Barker R J, Schamiloglu E. High power microwave source and technology[M]. Liu Guozhi, Zhou Chuanming, trans. Beijing: Tsinghua University Press, 2005: 154-158
    [2] 杨浩, 闫二艳, 郑强林, 等. 临近空间高功率微波辐照放电试验技术[J]. 强激光与粒子束, 2019, 31:103216 doi: 10.11884/HPLPB201931.190151

    Yang Hao, Yan Eryan, Zheng Qianglin, et al. Examination research of high power microwave irradiation discharge in near space[J]. High Power Laser and Particle Beams, 2019, 31: 103216 doi: 10.11884/HPLPB201931.190151
    [3] Sprangle P, Hafizi B, Milchberg H, et al. Active remote detection of radioactivity based on electromagnetic signatures[J]. Physics of Plasmas, 2014, 21: 013103. doi: 10.1063/1.4861633
    [4] Isaacs J, Miao Chenlong, Sprangle P. Remote monostatic detection of radioactive material by laser-induced breakdown[J]. Physics of Plasmas, 2016, 23: 033507. doi: 10.1063/1.4943404
    [5] Nusinovich G S, Pu Ruifeng, Antonsen T M Jr, et al. Development of THz-range gyrotrons for detection of concealed radioactive materials[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2011, 32(3): 380-402. doi: 10.1007/s10762-010-9708-y
    [6] Nusinovich G S, Sprangle P, Semenov V E, et al. On the sensitivity of terahertz gyrotron based systems for remote detection of concealed radioactive materials[J]. Journal of Applied Physics, 2012, 111: 124912. doi: 10.1063/1.4730959
    [7] Dorozhkina D, Semenov V, Olsson T, et al. Investigations of time delays in microwave breakdown initiation[J]. Physics of Plasmas, 2006, 13: 013506. doi: 10.1063/1.2158696
    [8] 王华杰, 马喆, 龚少博, 等. 高功率微波与大气等离子体相互作用研究[J]. 核聚变与等离子体物理, 2022, 42(s1): 170-174

    Wang Huajie, Ma Zhe, Gong Shaobo, et al. Study on the interaction between high power microwave and atmospheric plasma. Nuclear Fusion and Plasma Physics, 2022, 42(s1): 170-174
    [9] ShimamuraK , YamasakiJ , Miyawaki K, et al. Propagation of microwave breakdown in argon induced by a 28 GHz gyrotron beam[J]. Physics of Plasmas, 2021, 28: 033505.
    [10] Foster J, Krompholz H, Neuber A. Investigation of the delay time distribution of high power microwave surface flashover[J]. Physics of Plasmas, 2011, 18: 013502. doi: 10.1063/1.3534823
    [11] Li Shuguang, Xu Da, Zhang Jie, et al. A new three-level fourth-order compact finite difference scheme for the extended Fisher-Kolmogorov equation[J]. Applied Numerical Mathematics, 2022, 178: 41-51. doi: 10.1016/j.apnum.2022.03.010
    [12] 杨浩, 闫二艳, 郑强林, 等. 一种准光反射聚焦微波放电大气等离子体装置[J]. 强激光与粒子束, 2019, 31:053002 doi: 10.11884/HPLPB201931.180350

    Yang Hao, Yan Eryan, Zheng Qianglin, et al. A microwave plasma system with quasi optical focusing reflector[J]. High Power Laser and Particle Beams, 2019, 31: 053002 doi: 10.11884/HPLPB201931.180350
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  153
  • HTML全文浏览量:  84
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-01
  • 修回日期:  2023-11-07
  • 录用日期:  2023-10-31
  • 网络出版日期:  2023-11-14
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回