留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于集成光学的兆伏每米强脉冲电场传感器研制

石跃武 陈伟 聂鑫 王伟 苗建国 吴伟 陈志强 谢霖燊 吴刚 贾伟

石跃武, 陈伟, 聂鑫, 等. 基于集成光学的兆伏每米强脉冲电场传感器研制[J]. 强激光与粒子束, 2024, 36: 043011. doi: 10.11884/HPLPB202436.230249
引用本文: 石跃武, 陈伟, 聂鑫, 等. 基于集成光学的兆伏每米强脉冲电场传感器研制[J]. 强激光与粒子束, 2024, 36: 043011. doi: 10.11884/HPLPB202436.230249
Shi Yuewu, Chen Wei, Nie Xin, et al. Development of the integrated-optics-based sensor for MV/m intense pulse electric field[J]. High Power Laser and Particle Beams, 2024, 36: 043011. doi: 10.11884/HPLPB202436.230249
Citation: Shi Yuewu, Chen Wei, Nie Xin, et al. Development of the integrated-optics-based sensor for MV/m intense pulse electric field[J]. High Power Laser and Particle Beams, 2024, 36: 043011. doi: 10.11884/HPLPB202436.230249

基于集成光学的兆伏每米强脉冲电场传感器研制

doi: 10.11884/HPLPB202436.230249
详细信息
    作者简介:

    石跃武,shiyuewu@nint.ac.cn

  • 中图分类号: O441.5

Development of the integrated-optics-based sensor for MV/m intense pulse electric field

  • 摘要: 针对兆伏每米(MV/m)强脉冲电场的测量需求,设计并研制了基于集成光学的共路干涉仪(CPI)小体积宽带脉冲电场传感器。基于电光效应及电光调制原理,建立了传感器的幅度和频率响应传递函数,分析了集成光学探头的接收特性,并推导了探头灵敏度和带宽随波导长度的关系。设计了适用于MV/m量级脉冲电场测量的纯光学非金属CPI传感器,提出了利用晶体宽度对测量灵敏度调控的方法,使得设计的半波电场提高了2倍以上。研制的无源探头体积小于20 mm×10 mm×5 mm、理论带宽大于4 GHz、最大测量幅度大于1.2 MV/m。研制的传感器在高空电磁脉冲(HEMP)、雷电电磁脉冲(LEMP)及脉冲功率等领域具有应用前景。
  • 图  1  光学电场传感器结构

    Figure  1.  Structure of optical electric field sensor

    图  2  CST microwave studio中建立的传感器仿真模型

    Figure  2.  Simulation model in CST microwave studio

    图  3  输入脉冲电场及晶体表面中心电场仿真结果

    Figure  3.  Input pulse electric field and simulation results of the electric field on crystal surface

    图  4  光学电场传感器频率响应曲线

    Figure  4.  Frequency response of the optical electric field sensor

    图  5  研制的MV/m量级集成光学脉冲电场探头

    Figure  5.  Fabricated integrated optical field sensor for MV/ m pulsed electric-field

    图  6  不同温度条件下偏置控制和未控制的传感器输出功率对比

    Figure  6.  Comparison of the output power of the sensor under bias control and without bias control at different temperature

    图  7  标定系统连接关系及标定场景

    Figure  7.  Topology relation of calibration system and the calibration scene

    图  8  典型输入输出标定波形归一化结果

    Figure  8.  Normalized results of typical input/ output waveform in the sensor calibration

    表  1  转换系数标定数据及计算结果

    Table  1.   Calibration data and its calculated results

    number input voltage/kV output voltage/mV conversion coefficient/(kV·m−1·V−1)
    1 1.08 10.80 2.38
    2 1.50 15.20 2.35
    3 2.02 20.40 2.36
    4 2.52 25.40 2.36
    5 2.98 30.00 2.37
    下载: 导出CSV
  • [1] Huang Fanghong, Yan Youjie, Chen Jin, et al. Calibration uncertainty evaluation of D-dot sensors[J]. Progress in Electromagnetics Research Letters, 2019, 83: 115-122. doi: 10.2528/PIERL18100502
    [2] Cui Zhitong, Mao Congguang, Nie Xin, et al. E-field sensor design for subnanosecond fast transient[C]//2012 6th Asia-Pacific Conference on Environmental Electromagnetics. 2012: 108-110.
    [3] 齐路, 张国钢, 刘竞存, 等. 电磁脉冲D-dot电场传感器的设计与优化[J]. 高压电器, 2018, 54(7):237-241,247

    Qi Lu, Zhang Guogang, Liu Jingcun, et al. Design and optimization of D-dot E-field sensor for electromagnetic pulse detection[J]. High Voltage Apparatus, 2018, 54(7): 237-241,247
    [4] 王悦, 景莘慧. 渐进圆锥D-dot电场传感器频响分析[J]. 安全与电磁兼容, 2019(2):21-24

    Wang Yue, Jing Xinhui. Frequency response analysis of asymptotic conical D-dot electric field sensor[J]. Safety & EMC, 2019(2): 21-24
    [5] 郭飞, 王绍飞, 李秀广, 等. 基于渐进圆锥天线的ns前沿电磁脉冲电场传感器[J]. 强激光与粒子束, 2015, 27:043201 doi: 10.3788/HPLPB20152704.43201

    Guo Fei, Wang Shaofei, Li Xiuguang, et al. Development of nanosecond rise time E-field sensor based on asymptotic conical antenna[J]. High Power Laser and Particle Beams, 2015, 27: 043201 doi: 10.3788/HPLPB20152704.43201
    [6] 刘卫东, 胡小锋. 瞬态电场时域测试技术的研究现状与展望[J]. 高压电器, 2014, 50(7):132-138

    Liu Weidong, Hu Xiaofeng. Review of transient electric field measurement in time domain[J]. High Voltage Apparatus, 2014, 50(7): 132-138
    [7] 刘逸飞, 马良, 程引会, 等. 基于光纤传输的灵敏度自校准脉冲电场测量系统[J]. 高电压技术, 2021, 47(4):1478-1484

    Liu Yifei, Ma Liang, Cheng Yinhui, el al. Pulse electric field measurement system with sensitivity self-calibration based on optical fiber transmission[J]. High Voltage Engineering, 2021, 47(4): 1478-1484
    [8] 崔志同, 聂鑫, 陈鹏. 基于圆柱偶极天线的宽频带电场测量系统[C]//第22届全国电磁兼容学术会议论文选. 2012: 121-126

    Cui Zhitong, Nie Xin, Chen Peng. Wide-band E-field sensor with the dipole antenna[C]//The 22th Chinese National Academic Conference on Electromagnetic Compatibility. 2012: 121-126
    [9] 孔旭, 谢彦召. 基于光纤技术的电磁脉冲3维电、磁场测量系统[J]. 高电压技术, 2015, 41(1):339-345

    Kong Xu, Xie Yanzhao. Electric field and magnetic field measuring system for EMP measurement based on fiber technology[J]. High Voltage Engineering, 2015, 41(1): 339-345
    [10] 周开明, 王艳, 谢泽元. 一种宽频带小型化光纤电场测量系统的研制[J]. 信息与电子工程, 2010, 8(1):30-32

    Zhou Kaiming, Wang Yan, Xie Zeyuan. Design of a wideband and minitype optical fiber metrical system[J]. Information and Electronic Engineering, 2010, 8(1): 30-32
    [11] 石立华, 司荣仁, 李炎新, 等. 微型化光纤传输电磁脉冲传感器研究[J]. 电波科学学报, 2012, 27(6):1152-1157,1171

    Shi Lihua, Si Rongren, Li Yanxin, et al. Small size fiber-optic electric field sensor for EMP measurement[J]. Chinese Journal of Radio Science, 2012, 27(6): 1152-1157,1171
    [12] 张晓明, 孟萃, 魏明, 等. 宽频带电磁脉冲电场传感器的研制与测试[J]. 核技术, 2011, 34(4):299-303

    Zhang Xiaoming, Meng Cui, Wei Ming. Development of a wideband transient electric field sensor[J]. Nuclear Techniques, 2011, 34(4): 299-303
    [13] 刘青, 谢彦召. 高空电磁脉冲作用下埋地电缆的瞬态响应规律[J]. 高电压技术, 2017, 43(9):3014-3020

    Liu Qing, Xie Yanzhao. Transient response law of buried cable to high-altitude electromagnetic pulse[J]. High Voltage Engineering, 2017, 43(9): 3014-3020
    [14] Tajima K, Kobayashi R, Kuwabara N, et al. Development of optical isotropic e-field sensor operating more than 10 GHz using Mach-Zehnder interferometers[J]. IEICE Transactions on Electronics, 2002, E85-C(4): 961-968.
    [15] Ogawa O, Sowa T, Ichizono S. A guided-wave optical electric field sensor with improved temperature stability[J]. Journal of Lightwave Technology, 1999, 17(5): 823-830. doi: 10.1109/50.762899
    [16] Sawaki I, Nakajima H, Seino M, et al. Thermally stabilized Z-cut Ti: LiNbO3, waveguide switch[C]//Conference on Lasers and Electro-Optics 1986. 1986: 46-47.
    [17] Zhang Jiahong, Chen Fushen, Sun Bao, et al. A novel bias angle control system for LiNbO3 photonic sensor using wavelength tuning[J]. IEEE Photonics Technology Letters, 2013, 25(20): 1993-1995. doi: 10.1109/LPT.2013.2279682
    [18] Sun Bao, Chen Fushen, Chen Kaixin, et al. Integrated optical electric field sensor from 10 kHz to 18 GHz[J]. IEEE Photonics Technology Letters, 2012, 24(13): 1106-1108. doi: 10.1109/LPT.2012.2195780
    [19] Shi Yuewu, Wang Wei, Zhu Zhizhen, el al. A bias controllable birefringence modulation measurement system for subnanosecond pulsed electric field[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 6004311.
    [20] 石跃武, 周辉, 聂鑫, 等. 马赫-曾德尔调制器最佳偏置点自动锁定技术研究[J]. 激光与光电子学进展, 2015, 52:042301

    Shi Yuewu, Zhou Hui, Nie Xin, et al. Research on the best bias point automatic locking technique for Mach-Zehnder modulators[J]. Laser & Optoelectronics Progress, 2015, 52: 042301
    [21] Peuzin J C. Comment on “domain inversion effects in Ti-LiNbO3 integrated optical devices” [Appl. Phys. Lett. 46, 933 (1985)][J]. Applied Physics Letters, 1986, 48(16): 1104.
    [22] 李金洋, 逯丹凤, 祁志美. 铌酸锂波导电光重叠积分因子的波长依赖特性分析[J]. 物理学报, 2014, 63:077801 doi: 10.7498/aps.63.077801

    Li Jinyang, Lu Danfeng, Qi Zhimei. Analyses of wavelength dependence of the electro-optic overlap integral factor for LiNbO3 channel waveguides[J]. Acta Physica Sinica, 2014, 63: 077801 doi: 10.7498/aps.63.077801
    [23] 石跃武, 周辉, 聂鑫, 等. 集成光学电场探头测量HEMP的系统误差分析[J]. 强激光与粒子束, 2015, 27:073202 doi: 10.3788/HPLPB20152707.73202

    Shi Yuewu, Zhou Hui, Nie Xin, et al. Analysis of system error for HEMP measurement using integrated optical E-field sensors[J]. High Power Laser and Particle Beams, 2015, 27: 073202 doi: 10.3788/HPLPB20152707.73202
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  128
  • HTML全文浏览量:  48
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-01
  • 修回日期:  2023-12-18
  • 录用日期:  2023-11-20
  • 网络出版日期:  2023-12-26
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回