留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

加载环形等离子体束的圆柱波导中慢等离子体波高频特性的数值研究

杨温渊 董志伟 董烨 周前红

杨温渊, 董志伟, 董烨, 等. 加载环形等离子体束的圆柱波导中慢等离子体波高频特性的数值研究[J]. 强激光与粒子束, 2024, 36: 043030. doi: 10.11884/HPLPB202436.230275
引用本文: 杨温渊, 董志伟, 董烨, 等. 加载环形等离子体束的圆柱波导中慢等离子体波高频特性的数值研究[J]. 强激光与粒子束, 2024, 36: 043030. doi: 10.11884/HPLPB202436.230275
Yang Wenyuan, Dong Zhiwei, Dong Ye, et al. Numerical study on high frequency characteristics of slow plasma wave in cylindrical waveguide loaded with annular plasma beam[J]. High Power Laser and Particle Beams, 2024, 36: 043030. doi: 10.11884/HPLPB202436.230275
Citation: Yang Wenyuan, Dong Zhiwei, Dong Ye, et al. Numerical study on high frequency characteristics of slow plasma wave in cylindrical waveguide loaded with annular plasma beam[J]. High Power Laser and Particle Beams, 2024, 36: 043030. doi: 10.11884/HPLPB202436.230275

加载环形等离子体束的圆柱波导中慢等离子体波高频特性的数值研究

doi: 10.11884/HPLPB202436.230275
基金项目: 国家自然科学基金项目(11875094)
详细信息
    作者简介:

    杨温渊,yang_wenyuan@iapcm.ac.cn

  • 中图分类号: TN128

Numerical study on high frequency characteristics of slow plasma wave in cylindrical waveguide loaded with annular plasma beam

  • 摘要: 等离子体相对论微波发生器(PRMG)可以产生宽带高功率微波输出,同时又具有良好的频率可调谐性,因此在雷达、通信、电子对抗和物体探测等诸多领域均具有良好的应用前景。PRMG通常采用加载环形等离子体束的圆柱波导作为其波束互作用区,工作模式为慢等离子体波TM01模(下称P-TM01模)。P-TM01模的色散特性及其变化规律对PRMG输出性能有着重要影响。利用全电磁粒子模拟程序对加载环形等离子体束的圆柱波导中P-TM01模的色散特性和场分布进行了粒子模拟和分析,获得等离子体束密度np、径向厚度Δrp和径向位置rp以及外加引导磁场强度Bz和波导半径rw等参数对P-TM01模的色散特性和场分布的影响规律。主要研究结果包括:(1)一定范围内,np 和Δrp的变化对色散特性影响较大,rpBzrw的变化对色散特性影响较小。值得关注的是,由于波导中环形等离子体束的存在,随着波导半径rw的增加,相同纵向波数kz对应的P-TM01模的频率没有降低而是略有提高。因此,在实际应用时,可以适当加大波导径向尺寸以提高器件功率容量;适当降低磁场,则有利于提高器件的紧凑性。(2)P-TM01模的纵向电场的方向不随径向位置变化,径向电场的方向在等离子体束内外两侧相反,外侧的场分布与同轴波导中TEM模相似。(3)主要物理参数变化时,场分布基本特点不会改变。但随着纵向模式数Nkz相应增加,电场能量向等离子体束收拢,不利于波束相互作用和电磁场的耦合输出。因此为了PRMG的高效运行,束波互作用的共振点最好落在kz相对较小的区域。上述研究结果对PRMG的设计和优化具有一定的理论参考价值。
  • 图  1  加载环形等离子体束的圆柱波导rz截面图

    Figure  1.  Schematic drawing of the axial cross sectionin a plasma waveguide

    图  2  PIC模拟和解析公式计算得到的不同等离子体密度对应的P-TM01模色散曲线图

    Figure  2.  Dispersion curves of the P-TM01 mode in a plasma waveguide with different plasma density calculated by PIC simulations and theoretical formulation

    图  5  不同强度的外加引导磁场对应的P-TM01模色散曲线图

    Figure  5.  Dispersion curves of the P-TM01 mode in a plasma waveguide with different intensity of the guiding magnetic field

    图  3  不同等离子体束厚度对应的P-TM01模色散曲线图

    Figure  3.  Dispersion curves of the P-TM01 mode in a plasma waveguide with different plasma radial thickness

    图  4  不同等离子体束径向位置对应的P-TM01模色散曲线图

    Figure  4.  Dispersion curves of the P-TM01 mode in a plasma waveguide with different plasma radial position

    图  6  不同波导半径对应的P-TM01模色散曲线图

    Figure  6.  Dispersion curves of the P-TM01 mode in a plasma waveguide with different waveguide radius

    图  7  点A、B和C处P-TM01模的轴向和径向电场分布等高图

    Figure  7.  Contour plots of the electric field of the P-TM01 mode at points A, B, and C

    图  8  点B1、B2、B3和B4处P-TM01模的的轴向电场分布等高图

    Figure  8.  Contour plots of the electric field of the P-TM01 mode Ez at points B1, B2, B3 and B4

  • [1] Krementsov V I, Rabinovich M S, Rukhadze A A, et al. Excitation of electromagnetic waves in a plasma in a homogeneous magnetic field by a strong-current relativistic electron beam[J]. Soviet Journal of Experimental and Theoretical Physics, 1975, 42(4): 622-627.
    [2] Bogdankevich L S, Kuzelev M V, Rukhadze A A. Plasma microwave electronics[J]. Soviet Physics Uspekhi, 1981, 24(1): 1-16. doi: 10.1070/PU1981v024n01ABEH004606
    [3] Kuzelev M V, Mukhametzyanov F K, Rabinovich M S, et al. Relativistic plasma UHF generator[J]. Sov Phys JETP, 1982, 54: 780.
    [4] Kuzelev M V, Loza O T, Ponomarev A V, et al. Spectral characteristics of a relativistic plasma microwave generator[J]. Journal of Experimental and Theoretical Physics, 1996, 82(6): 1102-1111.
    [5] Strelkov P S, Ivanov I E, Shumeiko D V. Noise characteristics of a plasma relativistic microwave amplifier[J]. Plasma Physics Reports, 2016, 42(7): 653-657. doi: 10.1134/S1063780X16070102
    [6] Bogdankevich I L, Litvin V O, Loza O T. On the development of plasma relativistic microwave oscillator without strong magnetic field[J]. Bulletin of the Lebedev Physics Institute, 2016, 43(2): 62-65. doi: 10.3103/S1068335616020032
    [7] Ernyleva S E, Loza O T. Plasma relativistic microwave noise amplifier with the inverse configuration[J]. Physics of Wave Phenomena, 2017, 25(1): 56-59. doi: 10.3103/S1541308X17010095
    [8] Litvin V O, Loza O T. High-power broadband plasma maser with magnetic self-insulation[J]. Physics of Plasmas, 2018, 25: 013105. doi: 10.1063/1.5005492
    [9] Kartashov I N, Kuzelev M V. The use of a coaxial electrodynamic system for amplification of microwave range waves during the development of beam–plasma instability[J]. Plasma Physics Reports, 2021, 47(6): 548-556. doi: 10.1134/S1063780X2106009X
    [10] Ernyleva S E, Loza O T. Microwave pulse shortening in plasma relativistic high-current microwave electronics[J]. Physics of Wave Phenomena, 2017, 25(2): 130-136. doi: 10.3103/S1541308X17020091
    [11] Kartashov I N, Kuzelev M V, Strelkov P S, et al. Influence of plasma unsteadiness on the spectrum and shape of microwave pulses in a plasma relativistic microwave amplifier[J]. Plasma Physics Reports, 2018, 44(2): 289-298. doi: 10.1134/S1063780X1802006X
    [12] Ivanov I E. Radiation spectra of the plasma relativistic microwave oscillator[J]. Plasma Physics Reports, 2019, 45(7): 662-673. doi: 10.1134/S1063780X19060072
    [13] Andreev S E, Bogdankevich I L, Gusein-Zade N G, et al. Change in the generation mode of the plasma relativistic microwave oscillator[J]. Plasma Physics Reports, 2019, 45(7): 674-684. doi: 10.1134/S1063780X1907002X
    [14] Strelkov P S, Tarakanov V P, Dias Mikhailova D E, et al. Ultrawideband plasma relativistic microwave source[J]. Plasma Physics Reports, 2019, 45(4): 345-354. doi: 10.1134/S1063780X19030097
    [15] Ponomarev A V, Buleyko A B, Ul’yanov D K. Feedback suppression in the plasma relativistic microwave noise amplifier with inverse configuration[J]. Plasma Physics Reports, 2020, 46(9): 950-953. doi: 10.1134/S1063780X2009007X
    [16] Ivanov I E. Narrow-band generation of plasma relativistic microwave generator[J]. Plasma Physics Reports, 2021, 47(5): 440-452. doi: 10.1134/S1063780X21050032
    [17] Andreev S E, Bogdankevich I L, Gusein-Zade N G, et al. Effect of the erosion of collector surface on the operation of a pulse-periodic plasma relativistic microwave generator[J]. Plasma Physics Reports, 2021, 47(3): 257-268. doi: 10.1134/S1063780X21030028
    [18] Strelkov P S, Ivanov I E, Dias Mikhailova E D, et al. Spectra of plasma relativistic microwave amplifier of monochromatic signal[J]. Plasma Physics Reports, 2021, 47(3): 269-278. doi: 10.1134/S1063780X21030090
    [19] Birau M. Linear theory of plasma Čerenkov masers[J]. Physical Review E, 1996, 54(5): 5599-5611. doi: 10.1103/PhysRevE.54.5599
    [20] Kuzelev M V, Rukhadze A A. Present status of the theory of relativistic plasma microwave electronics[J]. Plasma Physics Reports, 2000, 26(3): 231-254. doi: 10.1134/1.952843
    [21] Kartashov I N, Kuzelev M V, Rukhadze A A. Amplification of surface waves in a plasma waveguide by a straight relativistic electron beam in a finite magnetic field[J]. Plasma Physics Reports, 2004, 30(1): 56-61. doi: 10.1134/1.1641977
    [22] Yang Wenyuan, Dong Ye, Chen Jun, et al. Brief introduction and recent applications of a large-scale parallel three-dimensional PIC code named NEPTUNE3D[J]. IEEE Transactions on Plasma Science, 2012, 40(7): 1937-1944. doi: 10.1109/TPS.2012.2195683
  • 加载中
图(8)
计量
  • 文章访问数:  140
  • HTML全文浏览量:  54
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-17
  • 修回日期:  2023-10-24
  • 录用日期:  2023-10-24
  • 网络出版日期:  2023-11-07
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回