留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地面装备电源变换系统高低压线缆串扰仿真研究

熊瑛 李小健 王彪 张莹 杜晓琳 聂秀丽 王天楠

熊瑛, 李小健, 王彪, 等. 地面装备电源变换系统高低压线缆串扰仿真研究[J]. 强激光与粒子束, 2024, 36: 043023. doi: 10.11884/HPLPB202436.230276
引用本文: 熊瑛, 李小健, 王彪, 等. 地面装备电源变换系统高低压线缆串扰仿真研究[J]. 强激光与粒子束, 2024, 36: 043023. doi: 10.11884/HPLPB202436.230276
Xiong Ying, Li Xiaojian, Wang Biao, et al. Research on crosstalk simulation of high and low voltage wiring harnesses in ground equipment power conversion system[J]. High Power Laser and Particle Beams, 2024, 36: 043023. doi: 10.11884/HPLPB202436.230276
Citation: Xiong Ying, Li Xiaojian, Wang Biao, et al. Research on crosstalk simulation of high and low voltage wiring harnesses in ground equipment power conversion system[J]. High Power Laser and Particle Beams, 2024, 36: 043023. doi: 10.11884/HPLPB202436.230276

地面装备电源变换系统高低压线缆串扰仿真研究

doi: 10.11884/HPLPB202436.230276
详细信息
    作者简介:

    熊 瑛,xiongying__1989@163.com

    通讯作者:

    李小健,bandage@126.com

  • 中图分类号: TM341

Research on crosstalk simulation of high and low voltage wiring harnesses in ground equipment power conversion system

  • 摘要: 电源变换系统中功率器件如MOSFET和IGBT开关管的高速切换将产生高幅值和宽频段的电磁干扰,是电动车辆最为常见也无法避免的电磁干扰源。同时,互连线缆是机电设备传递信号和能量的载体,是实现设备功能不可或缺的组成部分,线缆的天线效应使其成为设备产生电磁干扰的主要途径,是系统电磁兼容问题的主要根源之一。为了分析高压电源变换系统对低压控制系统的电磁耦合,以某典型地面装备电源变换系统IGBT开关管产生的脉冲宽度调制波(PWM波)作为电磁干扰源,以实装线缆作为分析对象,构建高低压线缆串扰模型,仿真分析不同线缆对地距离、线缆间距条件下单线、屏蔽线、双绞线等多类低压线缆的近端串扰电压,得出低压线缆的抗干扰性,为系统线缆的布线提供指导。
  • 图  1  共模电压仿真波形

    Figure  1.  Common mode voltage simulation waveforms

    图  2  旋变信号线电磁结构模型

    Figure  2.  Electromagnetic structure model of signal cables

    图  3  不同类别信号线上的近端串扰耦合电压

    Figure  3.  Near end crosstalk coupling voltage on different types of signal cables

    图  4  不同线缆间距下屏蔽线缆的近端串扰耦合电压

    Figure  4.  Near end crosstalk coupling voltage of shielded cables with different cable spacing

    图  5  不同线缆对地距离下屏蔽线缆的近端串扰耦合电压

    Figure  5.  Near end crosstalk coupling voltage of shielded cables under different cable to ground distances

    图  6  某高压电源变换系统拓扑

    Figure  6.  Topology of a high voltage power supply transformation system

    图  7  信号线缆布局及其电磁模型

    Figure  7.  Signal cable layout and its electromagnetic model

    图  8  ECU与DC/AC的信号线缆近场耦合电压

    Figure  8.  Near field coupling voltage of signal cable between ECU and DC/AC

    图  9  ECU与VCU的信号线缆近场耦合电压

    Figure  9.  Near field coupling voltage of signal cable between ECU and VCU

    图  10  VCU与控制器3的信号线缆近场耦合电压

    Figure  10.  Near field coupling voltage of signal cables between VCU and controller 3

    图  11  控制器1与DC/DC变换器的信号线缆近场耦合电压

    Figure  11.  Near field coupling voltage of signal cables between controller 1 and DC/DC

    表  1  动力线缆结构参数

    Table  1.   Structural parameters of power cable

    material thickness/mm
    wire copper 15.0
    insulator inside PE 3.0
    screen tinned copper 0.2
    insulator outside PE 2.5
    下载: 导出CSV

    表  2  信号线缆电磁模型参数

    Table  2.   Electromagnetic model parameters of signal cables

    No. cable name start port end port length/mm cable type
    1 VCU-ECU N1 N1-1 50.00 single cable
    2 ECU-DC/AC N1-1 N1-2 70.71 single cable
    3 DC/AC-motor signal cable N1-2 N1-3 950.00 twisted pair cable
    4 VCU-controller 3 N2 N2-1 60.00 twisted pair cable
    5 controller 3-monitor N2-1 N2-2 84.85 twisted pair cable
    6 monitor-controller 2 N2-2 N2-3 480.00 single cable
    7 controller 2-controller 1 N2-3 N2-4 141.42 twisted pair cable
    8 controller 1-DC/DC converter N2-4 N2-5 400.00 twisted pair cable
    下载: 导出CSV
  • [1] Zheng Feng, Wang Wugang, Zhao Xiaofan, et al. Identifying electromagnetic noise-source impedance using hybrid of measurement and calculation method[J]. IEEE Transactions on Power Electronics, 2019, 34(10): 9609-9618. doi: 10.1109/TPEL.2019.2891170
    [2] 龙海清. 电动汽车PWM驱动电机系统EMC研究[D]. 重庆: 重庆大学, 2014

    Long Haiqing. Study on the EMC of PWM drive motor system of electric vehicle[D]. Chongqing: Chongqing University, 2014
    [3] Wang Biao, Sun Yongwei, Wei Guanghui, et al. Research on test method of ignition temperature of electric explosive device under electromagnetic pulse[J]. Radioengineering, 2021, 30(3): 510-516. doi: 10.13164/re.2021.0510
    [4] Wang Biao, Sun Yongwei, Wang Xuetian, et al. Equivalent test method for strong electromagnetic field radiation effect of EED[J]. International Journal of Antennas and Propagation, 2021, 2021: 7331428.
    [5] Gubia E, Sanchis P, Ursua A, et al. Frequency domain model of conducted EMI in electrical drives[J]. IEEE Power Electronics Letters, 2005, 3(2): 45-49. doi: 10.1109/LPEL.2005.848730
    [6] Kim T, Feng Dong, Jang M, et al. Common mode noise analysis for cascaded boost converter with silicon carbide devices[J]. IEEE Transactions on Power Electronics, 2017, 32(3): 1917-1926. doi: 10.1109/TPEL.2016.2569424
    [7] Grandi G, Casadei D, Reggiani U. Analysis of common- and differential-mode HF current components in PWM inverter-fed AC motors[C]//Proceedings of the 29th Annual IEEE Power Electronics Specialists Conference. 1998: 1146-1151.
    [8] 冯冉冉. 电动汽车线束的电磁干扰建模与抑制技术研究[D]. 成都: 电子科技大学, 2021

    Feng Ranran. Research on electromagnetic interference and suppression technology of electric vehicle harness[D]. Chengdu: University of Electronic Science and Technology of China, 2021
    [9] 高建凯, 周德俭. 三维布线技术的电磁兼容性预测[J]. 现代表面贴装资讯, 2004, 3(5): 34-37

    Gao Jiankai, Zhou Dejian. Microwave circuit interconnect and manufacture technology[J]. Modern Surface Mounting Technology Information, 2005, 3(5): 34-37
    [10] 肖培. 机电设备互连线缆电磁干扰建模及计算方法研究[D]. 成都: 电子科技大学, 2019

    Xiao Pei. Study on modeling and calculation method for the electromagnetic interference of interconnection cable in electromechanical equipment[D]. Chengdu: University of Electronic Science and Technology of China, 2019
    [11] 林森. 线束串扰和抗扰性仿真在车辆上的应用[J]. 汽车实用技术, 2021, 46(14):35-38,109

    Lin Sen. Application of crosstalk and immunity simulation in vehicle[J]. Automobile Applied Technology, 2021, 46(14): 35-38,109
    [12] 汪泉弟, 安宗裕, 郑亚利, 等. 电动汽车开关电源电磁兼容优化设计方法[J]. 电工技术学报, 2014, 29(9):225-231 doi: 10.3969/j.issn.1000-6753.2014.09.032

    Wang Quandi, An Zongyu, Zheng Yali, et al. Electromagnetic compatibility optimization design for switching power supply used in electric vehicle[J]. Transactions of China Electrotechnical Society, 2014, 29(9): 225-231 doi: 10.3969/j.issn.1000-6753.2014.09.032
    [13] Wang Kunbo, Lu Hongmin, Chen Chongchong, et al. Modeling of system-level conducted EMI of the high-voltage electric drive system in electric vehicles[J]. IEEE Transactions on Electromagnetic Compatibility, 2022, 64(3): 741-749. doi: 10.1109/TEMC.2022.3147521
    [14] Revol B, Roudet J, Schanen J L, et al. EMI study of three-phase inverter-fed motor drives[J]. IEEE Transactions on Industry Applications, 2011, 47(1): 223-231. doi: 10.1109/TIA.2010.2091193
    [15] Bondarenko N, Zhai Li, Xu Bingjie, et al. A measurement-based model of the electromagnetic emissions from a power inverter[J]. IEEE Transactions on Power Electronics, 2015, 30(10): 5522-5531. doi: 10.1109/TPEL.2014.2384030
    [16] Xiong Ying, Li Xiaojian, Li Yan, et al. A high-frequency motor model constructed based on vector fitting method[C]//Proceedings of 2019 Joint International Symposium on Electromagnetic Compatibility, Sapporo and Asia-Pacific International Symposium on Electromagnetic Compatibility. 2019: 191-194.
    [17] 熊瑛, 李小健, 周伟, 等. 装甲车辆三相同步电机宽频电磁兼容模型构建方法[J]. 兵工学报, 2022, 43(7):1467-1477

    Xiong Ying, Li Xiaojian, Zhou Wei, et al. Broadband electromagnetic compatibility modeling for three-phase synchronous motor of armored vehicle[J]. Acta Armamentarii, 2022, 43(7): 1467-1477
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  187
  • HTML全文浏览量:  62
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-18
  • 修回日期:  2023-11-21
  • 录用日期:  2023-11-21
  • 网络出版日期:  2023-11-30
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回