留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ricker脉冲功率合成方法及辐射效率

谢继杨 蒋正 魏召唤 杨宏春

谢继杨, 蒋正, 魏召唤, 等. Ricker脉冲功率合成方法及辐射效率[J]. 强激光与粒子束, 2024, 36: 055018. doi: 10.11884/HPLPB202436.230285
引用本文: 谢继杨, 蒋正, 魏召唤, 等. Ricker脉冲功率合成方法及辐射效率[J]. 强激光与粒子束, 2024, 36: 055018. doi: 10.11884/HPLPB202436.230285
Xie Jiyang, Jiang Zheng, Wei Zhaohuan, et al. Power synthesis method of ricker pulsed and radiation efficiency[J]. High Power Laser and Particle Beams, 2024, 36: 055018. doi: 10.11884/HPLPB202436.230285
Citation: Xie Jiyang, Jiang Zheng, Wei Zhaohuan, et al. Power synthesis method of ricker pulsed and radiation efficiency[J]. High Power Laser and Particle Beams, 2024, 36: 055018. doi: 10.11884/HPLPB202436.230285

Ricker脉冲功率合成方法及辐射效率

doi: 10.11884/HPLPB202436.230285
基金项目: 时域电磁脉冲干扰效应机理研究(H04W211008)
详细信息
    作者简介:

    谢继杨,jy_xie_phys@163.com

    通讯作者:

    杨宏春,yhc690227@uestc.edu.cn

  • 中图分类号: TN99

Power synthesis method of ricker pulsed and radiation efficiency

  • 摘要: 针对时域天线辐射效率低的问题,对Ricker脉冲展开了研究。首先指出Ricker脉冲具有较高的中心频率,对提高天线的辐射效率大有裨益。然后从时延量精确控制出发,阐述了产生Ricker脉冲的功率合成方法。设计了一款单极脉冲源并采用锐化电容法优化了其下降沿,并以该单级脉冲源为基础,设计了一款峰峰值为5.1 kV,主峰半峰值脉宽为350 ps的Ricker脉冲源,其中心频率为0.5 GHz。为了验证以上分析的正确性,针对全金属的时域天线,提出了一种计算辐射效率的简便方法,并利用设计的Ricker脉冲和具有相同脉宽的单极脉冲来激励相同的天线。结果表明,单极脉冲的幅度辐射效率只有60%左右,而Ricker脉冲可以达到80%以上;单极脉冲的功率辐射效率不到40%,而Ricker脉冲则可以提高到60%以上。推导出合成高阶高斯脉冲最优延时的理论公式,提出了一种计算全金属类天线时域辐射效率的简便方法。利用Ricker脉冲做为激励信号,大幅提升了天线的辐射效率,大大减小了发射系统被反射功率损坏的风险,同时对天线小型化有着重要意义,在诸如探地雷达、高功率微波源等时域应用中具有广泛的应用前景。
  • 图  1  零阶信号和二阶信号的波形及频谱分布

    Figure  1.  Waveform and spectral distribution of zero-order and second-order signal

    图  2  Ricker脉冲功率合成方案框图

    Figure  2.  Block diagram of Ricker pulse’s power synthesis technique

    图  3  原始单极脉冲波形及归一化频谱

    Figure  3.  The waveform and normalized spectrum of OUP

    图  4  BUP的波形及归一化频谱

    Figure  4.  The waveform and normalized spectrum of BUP

    图  5  FRP的实物图与性能

    Figure  5.  Prototype and performance of Ricker pulse generator

    图  6  HPCA实物图与实测|S11|

    Figure  6.  Prototype and measured |S11| of HPCA

  • [1] Qiu Yangxin, Xie Yanzhao, Wang Shaofei, et al. A modularized high-power ultra-wideband radiation system based on the space-synthesis method[J]. Review of Scientific Instruments, 2022, 93: 044705. doi: 10.1063/5.0085894
    [2] Wang Shaofei, Xie Ynzhao, Gao Mingxiang, et al. Optimizing high-power ultra-wideband combined antennas for maximum radiation within finite aperture area[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(2): 834-842. doi: 10.1109/TAP.2018.2882615
    [3] Romanchenko I V, Ulmaskulov M R, Sharypov K A, et al. Four channel high power rf source with beam steering based on gyromagnetic nonlinear transmission lines[J]. Review of Scientific Instruments, 2017, 88: 054703. doi: 10.1063/1.4983803
    [4] Smith L P, Howell J C, Lim S. A size-reduced, 15-element, planar Yagi antenna[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(4): 2410-2415. doi: 10.1109/TAP.2020.3019564
    [5] Ge Jinjin, Zhu Fuguo, Wang Kan. A novel ultra wideband resistance loaded Bow-Tie antenna for ground penetrating radar applications[C]//2020 International Conference on Microwave and Millimeter Wave Technology (ICMMT). 2020: 1-3.
    [6] Shi Yifei, Amert A K, Whites K W. Miniaturization of ultrawideband monocone antennas using dielectric loading[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(2): 432-441. doi: 10.1109/TAP.2015.2510663
    [7] Wang Zedong, Yin Yingzeng, Wu Jianjun, et al. A miniaturized CPW-Fed antipodal Vivaldi antenna with enhanced radiation performance for wideband applications[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 16-19.
    [8] Biswas B, Ghatak R, Poddar D R. A fern fractal leaf inspired wideband antipodal Vivaldi antenna for microwave imaging system[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(11): 6126-6129. doi: 10.1109/TAP.2017.2748361
    [9] Zhu Shuangshuang, Liu Haiwen, Wen Pin. A new method for achieving miniaturization and gain enhancement of Vivaldi antenna array based on anisotropic Metasurface[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(3): 1952-1956. doi: 10.1109/TAP.2019.2891220
    [10] Elmansouri M A, Filipovic D S. Miniaturization of TEM horn using spherical modes engineering[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(12): 5064-5073. doi: 10.1109/TAP.2016.2620485
    [11] Andreev Y A, Buyanov Y I, Koshelev V I. A combined antenna with extended bandwidth[J]. Journal of Communications Technology and Electronics, 2005, 50(5): 535-543.
    [12] Wang Shaofei, Xie Yanzhao. Design and optimization of high-power UWB combined antenna based on Klopfenstein impedance taper[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(12): 6960-6967. doi: 10.1109/TAP.2017.2765543
    [13] Xie Jiyang, Sun Jiuxun, Cui Haijuan, et al. Miniaturized time-domain antenna with improved low-frequency radiation performance[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(7): 1577-1581. doi: 10.1109/LAWP.2023.3252049
    [14] Moosazadeh M, Kharkovsky S, Case J T, et al. Improved radiation characteristics of small antipodal Vivaldi antenna for microwave and millimeter-wave imaging applications[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 1961-1964. doi: 10.1109/LAWP.2017.2690441
    [15] Cheng Houyuan, Yang Helin, Li Yujun, et al. A compact Vivaldi antenna with artificial material lens and Sidelobe suppressor for GPR applications[J]. IEEE Access, 2020, 8: 64056-64063. doi: 10.1109/ACCESS.2020.2984010
    [16] Bang J, Lee J, Choi J. Design of a wideband antipodal Vivaldi antenna with an asymmetric parasitic patch[J]. Journal of Electromagnetic Engineering and Science, 2018, 18(1): 29-34. doi: 10.26866/jees.2018.18.1.29
    [17] Cheng Le, Mei Kaisheng, Chen Zhiqiang, et al. High-voltage repetitive nanosecond pulse generator utilizing power synthesis of modified avalanche transistorized Marx circuits[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 2002816.
    [18] Li Zi, Liu Haotian, Jiang Song, et al. A high-current all-solid-state pulse generator based on marx structure[J]. IEEE Transactions on Plasma Science, 2020, 48(10): 3629-3636. doi: 10.1109/TPS.2020.3021197
    [19] Efremov A M, Koshelev V I, Plisko V V, et al. A high-power source of Ultrawideband pulses of synthesized radiation[J]. Instruments and Experimental Techniques, 2019, 62(1): 33-41. doi: 10.1134/S0020441218060052
    [20] Andreev Y A, Efremov A M, Koshelev V I, et al. Radiation of high-power Ultrawideband pulses with elliptical polarization by four-element array of cylindrical helical antennas[J]. Laser and Particle Beams, 2015, 33(4): 633-640. doi: 10.1017/S0263034615000725
    [21] 杨宏春, 崔海娟, 李杨, 等. 超宽带电磁学及应用[M]. 成都: 电子科技大学出版社, 2021

    Yang Hongchun, Cui Haijuan, Li Yang, et al. Ultra-wideband Electromagnetism and its applications[M]. Chengdu: University of Electronic Science and Technology of China Press, 2021
    [22] 张雅茹, 陈袭, 李杨, 等. 高触发信号和功率合成的高峰值功率皮秒脉冲源[J]. 强激光与粒子束, 2022, 34:065001

    Zhang Yaru, Chen Xi, Li Yang, et al. High-power picosecond pulse source based on high trigger signal and power synthesis[J]. High Power Laser and Particle Beams, 2022, 34: 065001
    [23] Ren Xiaojing, Sugai T, Tokuchi A, et al. Solid-state Marx generator with sharpening capacitor[J]. IEEE Transactions on Plasma Science, 2022, 50(1): 103-108. doi: 10.1109/TPS.2021.3133634
  • 加载中
图(6)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  8
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-28
  • 修回日期:  2024-03-21
  • 录用日期:  2024-03-16
  • 网络出版日期:  2024-04-09
  • 刊出日期:  2024-04-28

目录

    /

    返回文章
    返回