留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Digital low-level radio frequency system and cavity simulator for 1.3 GHz continuous-wave superconducting radio-frequency cavity

Liu Kui Wang Cheng Huang Yuxuan Zhu Kuntuo Wang Tao

刘奎, 王程, 黄宇轩, 等. 1.3 GHz连续波超导射频腔的数字低电平射频系统和腔模拟器设计及测试[J]. 强激光与粒子束, 2024, 36: 084005. doi: 10.11884/HPLPB202436.230325
引用本文: 刘奎, 王程, 黄宇轩, 等. 1.3 GHz连续波超导射频腔的数字低电平射频系统和腔模拟器设计及测试[J]. 强激光与粒子束, 2024, 36: 084005. doi: 10.11884/HPLPB202436.230325
Liu Kui, Wang Cheng, Huang Yuxuan, et al. Digital low-level radio frequency system and cavity simulator for 1.3 GHz continuous-wave superconducting radio-frequency cavity[J]. High Power Laser and Particle Beams, 2024, 36: 084005. doi: 10.11884/HPLPB202436.230325
Citation: Liu Kui, Wang Cheng, Huang Yuxuan, et al. Digital low-level radio frequency system and cavity simulator for 1.3 GHz continuous-wave superconducting radio-frequency cavity[J]. High Power Laser and Particle Beams, 2024, 36: 084005. doi: 10.11884/HPLPB202436.230325

1.3 GHz连续波超导射频腔的数字低电平射频系统和腔模拟器设计及测试

doi: 10.11884/HPLPB202436.230325
详细信息
  • 中图分类号: TL506

Digital low-level radio frequency system and cavity simulator for 1.3 GHz continuous-wave superconducting radio-frequency cavity

More Information
  • 摘要:

    1.3 GHz连续波超导射频腔需要高精度低电平射频(LLRF)系统来稳定超导腔的电磁场。但由于1.3 GHz CW射频腔的高负载品质因数和宽电磁频段,射频腔在频域中的电磁带宽较小。射频功率源与射频腔体之间的微小电磁频率差异易造成发生器驱动谐振器控制系统的不稳定,最终导致腔体电磁场的变化。开发了一种自激环控制系统,以防止“有质”不稳定性的发生,并补偿微噪声的影响。此外,还开发了数字1.3 GHz射频腔体模拟器,用于验证LLRF系统的设计算法。测试表明,即使在射频腔失谐5 Hz时,自激励控制系统也能确保腔场的稳定性。经过对比,验证了1.3 GHz射频腔体模拟器是测试新算法的可靠平台。

  • Figure  1.  Simplified diagram of the GDR and SEL system

    Figure  2.  Schematic diagram of LLRF system framework

    Figure  3.  Structures of the SEL and GDR control algorithm

    Figure  4.  Layout of the 1.3 GHz cavity simulator

    Figure  5.  Comparison of bode plots with different bit lengths of the 1.3 GHz continuous wave superconducting cavity digital model (blue line: continuous model; green line: 32 bit; red line: 48 bit)

    Figure  6.  Hardware of the LLRF system and cavity simulator

    Figure  7.  Diagram of address space and interfaces connection of MicroTCA.4 firmware[23]

    Figure  8.  Measured values and ideal values of the cavity field under the cavity simulator detuned at 50 Hz

    Figure  9.  Amplitude and phase of the cavity field and the output of the LLRF controller in the locked SEL mode when the detuning frequency is 5 Hz

  • [1] Rolles D. Time-resolved experiments on gas-phase atoms and molecules with XUV and X-ray free-electron lasers[J]. Advances in Physics: X, 2023, 8: 2132182.
    [2] McNeil B W J, Thompson N R. X-ray free-electron lasers[J]. Nature Photonics, 2010, 4(12): 814-821. doi: 10.1038/nphoton.2010.239
    [3] Liu Tao, Huang Nanshun, Yang Hanxiang, et al. Status and future of the soft X-ray free-electron laser beamline at the SHINE[J]. Frontiers in Physics, 2023, 11: 1172368. doi: 10.3389/fphy.2023.1172368
    [4] Liu Kui, Li Lin, Wang Cheng, et al. Multi-port cavity model and low-level RF systems design for VHF gun[J]. Nuclear Science and Techniques, 2020, 31: 8. doi: 10.1007/s41365-019-0711-2
    [5] Neumann A. Compensating microphonics in SRF cavities to ensure beam stability for future free electron lasers[D]. Hamburg: University of Hamburg, 2008.
    [6] Neumann A, Anders W, Kugeler O, et al. Analysis and active compensation of microphonics in continuous wave narrow-bandwidth superconducting cavities[J]. Physical Review Special Topics-Accelerators and Beams, 2010, 13: 082001. doi: 10.1103/PhysRevSTAB.13.082001
    [7] Luo Lei, Sun Jinwei, Huang Boyan. A novel feedback active noise control for broadband chaotic noise and random noise[J]. Applied Acoustics, 2017, 116: 229-237. doi: 10.1016/j.apacoust.2016.09.029
    [8] Badillo I, Jugo J, Portilla J, et al. Pxie-based LLRF architecture and versatile test bench for heavy ion linear acceleration[J]. IEEE Transactions on Nuclear Science, 2015, 62(3): 963-971. doi: 10.1109/TNS.2015.2418536
    [9] Reece C. Overview of SRF-related activities at Jefferson Lab[C]//Proceedings of the 10th Workshop on RF Superconductivity. 2001.
    [10] Schulze D. Ponderomotive stability of R. F. resonators and resonator control systems[R]. ANL-TRANS-944, 1972.
    [11] Delayen J R. Phase and amplitude stabilization of superconducting resonators[D]. California: California Institute of Technology, 1978.
    [12] Pławski T. Digital RF control system for superconducting cavity with large Lorentz force detuning coefficient[D]. Warsaw: Warsaw University of Technology, 2014.
    [13] Konrad M. Development and commissioning of a digital rf control system for the S-DALINAC and migration of the accelerator control system to an EPICS-based system[D]. Darmstadt: Technische Universität Darmstadt, 2013.
    [14] Powers T. Practical aspects of SRF cavity testing and operations[C]//SRF Workshop. 2011: 60-63.
    [15] Geßler P. Synchronization and sequencing of data acquisition and control electronics at the European X-ray free electron laser[D]. Hamburg: Technische Universität Hamburg, 2015.
    [16] Doolittle L, Ma Hengjie, Champion M S. Digital low-level RF control using non-IQ sampling[C]//Proceedings of LINAC2006. 2006: 568-570.
    [17] Geng Zheqiao, Kalt R. Advanced topics on RF amplitude and phase detection for low-level RF systems[J]. Nuclear Science and Techniques, 2019, 30: 146. doi: 10.1007/s41365-019-0670-7
    [18] Li Xiao, Sun Hong, Long Wei, et al. Design and performance of the LLRF system for CSNS/RCS[J]. Chinese Physics C, 2015, 39: 027002. doi: 10.1088/1674-1137/39/2/027002
    [19] Du Botao, Lin Hongxiang, Liu Wei, et al. DSP Frame and Algorithm of LLRF of IR-FEL[C]//Proceedings of IPAC2017. 2017: 4017-4019.
    [20] Andraka R. A survey of CORDIC algorithms for FPGA based computers[C]//Proceedings of the 1998 ACM/SIGDA Sixth International Symposium on Field Programmable Gate Arrays. 1998: 191-200.
    [21] Mittal S, Gupta S, Dasgupta S. System generator: the state-of-art FPGA design tool for DSP applications[C]//Third International Innovative Conference on Embedded Systems, Mobile Communication and Computing (ICEMC2 2008). 2008: 187-190.
    [22] Schilcher T. Vector sum control of pulsed accelerating fields in Lorentz forces detuned superconducting cavities[D]. Hamburg: University of Hamburg, 1998.
    [23] Qiu Feng, Michizono S, Miura T, et al. Application of disturbance observer-based control in low level radio-frequency system in a compact energy recovery linac at KEK[J]. Physical Review Special Topics-Accelerators and Beams, 2015, 18: 092801. doi: 10.1103/PhysRevSTAB.18.092801
    [24] Butkowski L, Kozak T, Yang Bin, et al. FPGA firmware framework for MTCA. 4 AMC modules[C]//Proceedings of the 15th International Conference on Accelerator and Large Experimental Physics Control Systems. 2015.
  • 加载中
图(9)
计量
  • 文章访问数:  181
  • HTML全文浏览量:  106
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-19
  • 修回日期:  2024-04-15
  • 录用日期:  2024-04-15
  • 网络出版日期:  2024-06-15
  • 刊出日期:  2024-07-04

目录

    /

    返回文章
    返回