留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

边界形变互耦混响室屏蔽效能测试系统性能评估

王平平 程二威 周星 张怡

王平平, 程二威, 周星, 等. 边界形变互耦混响室屏蔽效能测试系统性能评估[J]. 强激光与粒子束, 2024, 36: 043014. doi: 10.11884/HPLPB202436.230345
引用本文: 王平平, 程二威, 周星, 等. 边界形变互耦混响室屏蔽效能测试系统性能评估[J]. 强激光与粒子束, 2024, 36: 043014. doi: 10.11884/HPLPB202436.230345
Wang Pingping, Cheng Erwei, Zhou Xing, et al. Performance evaluation of the shielding effectiveness testing system for boundary deformation mutual coupling reverberation chambers[J]. High Power Laser and Particle Beams, 2024, 36: 043014. doi: 10.11884/HPLPB202436.230345
Citation: Wang Pingping, Cheng Erwei, Zhou Xing, et al. Performance evaluation of the shielding effectiveness testing system for boundary deformation mutual coupling reverberation chambers[J]. High Power Laser and Particle Beams, 2024, 36: 043014. doi: 10.11884/HPLPB202436.230345

边界形变互耦混响室屏蔽效能测试系统性能评估

doi: 10.11884/HPLPB202436.230345
基金项目: 装备预先研究实验室基金项目(6142205210302)
详细信息
    作者简介:

    王平平,18630175878@163.com

  • 中图分类号: O441.4

Performance evaluation of the shielding effectiveness testing system for boundary deformation mutual coupling reverberation chambers

  • 摘要: 混混响室复杂强电磁环境下开展材料屏蔽效能测试是电磁防护领域的研究热点。研究边界形变互耦混响室屏蔽效能测试系统性能,开展了动态范围、电场分布特性和不确定度三个方面的试验验证,结果表明:在实际测试中,测试结果小于60 dB即为可信测试值;在1~10 GHz频段内,互耦混响室发射室的空间电场标准偏差小于3 dB,接收室的空间电场标准偏差小于2 dB,满足国际、国内相关标准要求,场均匀性良好;测试系统的扩展不确定度为5.90 dB,可以作为材料屏蔽效能测试平台使用。
  • 图  1  互耦混响室屏蔽效能测试系统框图

    Figure  1.  Block diagram of mutual coupling reverberation room shielding effectiveness test system

    图  2  空间电场自动测试软件

    Figure  2.  Space electric field automatic testing software

    图  3  测试系统动态范围

    Figure  3.  Dynamic range of test system

    图  4  测试系统空间电场分布均匀性

    Figure  4.  Spatial electric field distribution uniformity of the test system

  • [1] GJB 151B-2013, 军用设备和分系统电磁发射和敏感度要求与测量[S]

    GJB 151B-2013, Electromagnetic emission and susceptibility requirements and measurements for military equipment and subsystems[S]
    [2] GB/T 17626.21-2014, 电磁兼容 试验和测量技术 混波室试验方法[S]

    GB/T 17626.21-2014, Electromagnetic compatibility—testing and measurement techniques—reverberation chamber test methods[S]
    [3] 王庆国, 程二威. 电波混响室理论与应用[M]. 北京: 国防工业出版社, 2013

    Wang Qingguo, Cheng Erwei. Theories and applications of electromagnetic reverberation chamber[M]. Beijing: National Defense Industry Press, 2013
    [4] Hill D A. Electromagnetic fields in cavities: deterministic and statistical theories[M]. Piscataway: Wiley-IEEE Press, 2009.
    [5] Andrieu G. On the possible benefits of inserting metallic diffractors to improve low frequency performance of reverberation chambers[J]. IEEE Transactions on Electromagnetic Compatibility, 2021, 63(1): 304-307. doi: 10.1109/TEMC.2020.3038990
    [6] IEC 61000-4-21: 2011, Electromagnetic compatibility (EMC) part 4-21: testing and measurement techniques—reverberation chamber test methods[S].
    [7] Sorrentino A, Nunziata F, Cappa S, et al. A semi-reverberation chamber configuration to emulate second-order descriptors of real-life indoor wireless propagation channels[J]. IEEE Transactions on Electromagnetic Compatibility, 2021, 63(1): 3-10. doi: 10.1109/TEMC.2020.3005770
    [8] Reis A, Sarrazin F, Richalot E, et al. Radar cross section pattern measurements in a mode-stirred reverberation chamber: theory and experiments[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(9): 5942-5952. doi: 10.1109/TAP.2021.3060581
    [9] 姜林, 王庆国, 程二威. 机械搅拌混响室独立样本数建模及实验[J]. 强激光与粒子束, 2013, 25(11):3050-3054 doi: 10.3788/HPLPB20132511.3050

    Jiang Lin, Wang Qingguo, Cheng Erwei. Modelling and experimental study of the number of independent samples in reverberation chamber with mechanical stirring[J]. High Power Laser and Particle Beams, 2013, 25(11): 3050-3054 doi: 10.3788/HPLPB20132511.3050
    [10] 程二威, 刘逸飞. 频率搅拌混响室原理及应用[J]. 强激光与粒子束, 2015, 27:103202 doi: 10.11884/HPLPB201527.103202

    Cheng Erwei, Liu Yifei. Theory and application of frequency stirring reverberation chamber[J]. High Power Laser and Particle Beams, 2015, 27: 103202 doi: 10.11884/HPLPB201527.103202
    [11] 沈远茂, 陶洪波, 李吉, 等. 固定散射体对提高源搅拌混响室性能的研究[J]. 高电压技术, 2014, 40(3):918-922

    Shen Yuanmao, Tao Hongbo, Li Ji, et al. Research on performance improvement of source stirring reverberation chamber introduced by stationary diffusers[J]. High Voltage Engineering, 2014, 40(3): 918-922
    [12] Kouveliotis N K, Trakadas P T, Capsalis C N. Examination of field uniformity in vibrating intrinsic reverberation chamber using the FDTD method[J]. Electronics Letters, 2002, 38(3): 109-110. doi: 10.1049/el:20020076
    [13] Kouveliotis N K, Trakadas P T, Capsalis C N. FDTD modeling of a vibrating intrinsic reverberation chamber[J]. Progress in Electromagnetics Research, 2003, 39: 47-59. doi: 10.2528/PIER02050804
    [14] Leferink F, Boudenot J C, Van Etten W. Experimental results obtained in the vibrating intrinsic reverberation chamber[C]//IEEE International Symposium on Electromagnetic Compatibility. Symposium Record (Cat. No. 00CH37016). 2000: 639-644.
    [15] Leferink F. In-situ high field strength testing using a transportable reverberation chamber[C]//2008 Asia-Pacific Symposium on Electromagnetic Compatibility and 19th International Zurich Symposium on Electromagnetic Compatibility. 2008: 379-382.
    [16] Serra R, Leferink F B J. Optimizing the stirring strategy for the vibrating intrinsic reverberation chamber[C]//9th International Symposium on EMC and 20th International Wroclaw Symposium on Electromagnetic Compatibility. 2010: 457-462.
    [17] Hara M, Takahashi Y, Vogt-Ardatjew R, et al. Statistical analysis for reverberation chamber with flexible shaking walls with various amplitudes[C]//2018 International Symposium on Electromagnetic Compatibility. 2018: 694-698.
    [18] Serra R, Leferink F, Canavero F. “Good-but-imperfect” electromagnetic reverberation in a VIRC[C]//2011 IEEE International Symposium on Electromagnetic Compatibility. 2011: 954-959.
    [19] 刘逸飞, 陈永光, 程二威, 等. 基于能量守恒原理的嵌套混响室法材料屏蔽效能计算[J]. 高电压技术, 2014, 40(3):945-950

    Liu Yifei, Chen Yongguang, Cheng Erwei, et al. Material shielding effectiveness calculation for nested reverberation chamber method based on energy conservation principle[J]. High Voltage Engineering, 2014, 40(3): 945-950
    [20] Skrzypczynski J. Dual vibrating intrinsic reverberation chamber used for shielding effectiveness measurements[C]//10th International Symposium on Electromagnetic Compatibility. 2011: 133-136.
    [21] 程二威, 王平平, 赵敏, 等. 边界形变混响室设计与性能评估[J]. 强激光与粒子束, 2021, 33:123002 doi: 10.11884/HPLPB202133.210472

    Cheng Erwei, Wang Pingping, Zhao Min, et al. Design and performance evaluation of boundary deformation reverberation chamber[J]. High Power Laser and Particle Beams, 2021, 33: 123002 doi: 10.11884/HPLPB202133.210472
    [22] 许宏光. 基于C#的混响室自动化校准及测试软件的开发以及混响室内场强特性的研究[D]. 北京: 北京交通大学, 2014

    Xu Hognqiang. Development of automatic calibration and test software for reverberation chamber based on C# and the research of field strength characteristics inside a reverberation chamber [D]. Beijing: Beijing Jiaotong University, 2014
    [23] 苏政铭, 刘强, 赵远, 等. 基于柔性屏蔽材料混响室的设计与应用[J]. 强激光与粒子束, 2018, 30:073202 doi: 10.11884/HPLPB201830.180048

    Su Zhengming, Liu Qiang, Zhao Yuan, et al. Design and application of flexible shielding material based reverberation chamber[J]. High Power Laser and Particle Beams, 2018, 30: 073202 doi: 10.11884/HPLPB201830.180048
    [24] 陈超婵, 祝思婷, 蔡青. 电磁屏蔽薄膜屏蔽效能的测量不确定度分析与评定[J]. 科学技术创新, 2020(29):35-36 doi: 10.3969/j.issn.1673-1328.2020.29.013

    Chen Chaochan, Zhu Siting, Cai Qing. Uncertainty analysis and evaluation of shielding effectiveness measurement uncertainty for electromagnetic shielding films[J]. Scientific and Technological Innovation Information, 2020(29): 35-36 doi: 10.3969/j.issn.1673-1328.2020.29.013
    [25] 秦高强. EUT电尺寸对混响室抗扰度测试不确定度影响分析[D]. 南京: 东南大学, 2018

    Qin Gaoqiang. Analysis of influence of EUT electrical size on uncertainty of reverberation chamber immunity test[D]. Nanjing: Southeast University, 2018
    [26] 程二威, 王平平, 张怡, 等. 边界形变互耦混响室屏蔽效能测试技术研究[J]. 高电压技术, 2023, 49(7):3102-3109

    Cheng Erwei, Wang Pingping, Zhang Yi, et al. Research on shielding effectiveness test technology of boundary deformation mutual coupling reverberation chamber[J]. High Voltage Engineering, 2023, 49(7): 3102-3109
  • 加载中
图(4)
计量
  • 文章访问数:  87
  • HTML全文浏览量:  41
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-01
  • 修回日期:  2024-01-30
  • 录用日期:  2023-12-19
  • 网络出版日期:  2024-02-05
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回