留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

合肥先进光源储存环超导纵向梯度弯铁样机研制

陈超 杜双松 胡锐 李为民 王琳 冯光耀

陈超, 杜双松, 胡锐, 等. 合肥先进光源储存环超导纵向梯度弯铁样机研制[J]. 强激光与粒子束, 2024, 36: 084002. doi: 10.11884/HPLPB202436.230407
引用本文: 陈超, 杜双松, 胡锐, 等. 合肥先进光源储存环超导纵向梯度弯铁样机研制[J]. 强激光与粒子束, 2024, 36: 084002. doi: 10.11884/HPLPB202436.230407
Chen Chao, Du Shuangsong, Hu Rui, et al. Development of a superconducting longitudinal gradient bend prototype for Hefei Advanced Light Facility storage ring[J]. High Power Laser and Particle Beams, 2024, 36: 084002. doi: 10.11884/HPLPB202436.230407
Citation: Chen Chao, Du Shuangsong, Hu Rui, et al. Development of a superconducting longitudinal gradient bend prototype for Hefei Advanced Light Facility storage ring[J]. High Power Laser and Particle Beams, 2024, 36: 084002. doi: 10.11884/HPLPB202436.230407

合肥先进光源储存环超导纵向梯度弯铁样机研制

doi: 10.11884/HPLPB202436.230407
基金项目: 国家自然科学基金项目(12205299); 国家重点研发计划项目(2016YFA0402000)
详细信息
    作者简介:

    陈 超,cc4555@mail.ustc.edu.cn

    通讯作者:

    王 琳,wanglin@ustc.edu.cn

    冯光耀,fenggy@ustc.edu.cn

  • 中图分类号: TL594;O441;O514

Development of a superconducting longitudinal gradient bend prototype for Hefei Advanced Light Facility storage ring

  • 摘要: 介绍了合肥先进光源储存环超导纵向梯度弯铁样机的研制工作,基于已发展的一种磁体结构参数优化方法,综合考虑磁场空间分布需求和超导线圈工作负载,完成了磁铁结构的设计和优化。为了验证磁体设计方案,应用一种矩形铌钛线材和DT4C电工纯铁材料,研制了一台纵向长度0.30 m、磁极间隙46 mm的磁体样机。并搭建了一套简易低温测试装置,对该磁体进行了励磁特性测量,经过10余次失超,测得磁体最大工作电流大于275 A。磁体纵向磁场分布测量结果表明,该磁体在约196 A工作电流下,纵向磁场积分值达到0.4 T·m,峰值磁场约4.5 T。测试结果与理论设计结果基本一致,表明该种超导磁体的设计是可行的。
  • 图  1  超导纵向梯度二极磁铁与常规纵向梯度二极磁铁辐射亮度对比

    Figure  1.  Brightness of SLGB versus normal LGB

    图  2  SLGB样机示意图

    Figure  2.  Sketch of the SLGB (superconducting longitudinal gradient bend) prototype

    图  3  SLGB样机纵向磁场By分布仿真结果

    Figure  3.  Simulated longitudinal magnetic field profile of the SLGB protype

    图  4  一定横向范围内纵向磁场积分与对称中心处纵向磁场积分的相对偏差(用颜色表示大小)

    Figure  4.  Relative deviation of the longitudinal magnetic field integral within a specific transverse range from the longitudinal magnetic field integral at the symmetrical center (different colors denote different numerical values)

    图  5  磁体样机装配示意图

    Figure  5.  Schematic assembly of the protype magnet

    图  6  测试装置示意图

    Figure  6.  Sketch of the test device

    图  7  失超保护电路示意图

    Figure  7.  Schematic of quench protection circuit

    图  8  SLGB样机测试系统组成框架

    Figure  8.  Framework of the SLGB prototype testing system

    图  9  步进电机驱动磁测装置

    Figure  9.  Stepper motor driven magnetic measurement device

    图  10  磁测孔位示意图

    Figure  10.  Schematic of the magnetic field measurement positions

    图  11  SLGB样机部分磁测数据

    Figure  11.  Partial data from magnetic field measurements of the SLGB prototype

    表  1  铌钛超导线材主要参数

    Table  1.   Main parameters of the NbTi wire

    bare wire size
    insulated wire size

    Cu:NbTi
    ratio
    critical current
    at 4.2 K, 7 T/A
    number of
    filaments
    filament
    diameter/μm
    RRR
    (273 K/10 K)
    1.20 mm×0.75 mm 1.28 mm×0.83 mm 1.3 ≥566 630 27.6 ≥566
    下载: 导出CSV

    表  2  超导纵向梯度二极磁铁样机主要设计参数

    Table  2.   Main design parameters of the SLGB prototype

    magnet
    type
    yoke
    thickness/mm
    pole
    gap/mm
    pole length
    along
    beam/mm
    pole length
    transverse to
    beam/mm
    turns
    per
    layer
    number
    of
    layers
    conductor
    length per
    coil/m
    operating
    current/A
    peak
    field at
    conductor/T
    stored
    energy/kJ
    racetrack coils,
    DT4 yoke and pole
    120 46 39 109 38 36 500 252 6.35 14
    下载: 导出CSV

    表  3  低温装置热负载计算结果

    Table  3.   Calculation results for the heat load of cryogenic device

    source of thermal load first stage cold head thermal load/W second stage cold head thermal load /W
    G10 rods 0.15×4 0.07×4
    thermal radiation 2.3 0.2
    current leads (thermal conduction) 8×2 0.1×2
    current leads (joule heat) 10×2 ——
    pipes 4 0.1
    gas 0.4 0.03
    else 1 0.1
    total 44.3 0.71
    下载: 导出CSV

    表  4  SLGB样机实测结果与仿真结果对比

    Table  4.   Comparison between measured results and simulation results of the SLGB prototype

    Iin/A Bp/T Bydz/(T·m)
    measurement 195.56 4.5245 0.4004
    original simulation 251.40 4.8985 0.3992
    updated simulation 240.41 4.6019 0.4000
    下载: 导出CSV
  • [1] 焦毅, 白正贺. 第四代同步辐射光源物理设计与优化[J]. 强激光与粒子束, 2022, 34:104004 doi: 10.11884/HPLPB202234.220136

    Jiao Yi, Bai Zhenghe. Physics design and optimization of the fourth-generation synchrotron light sources[J]. High Power Laser and Particle Beams, 2022, 34: 104004 doi: 10.11884/HPLPB202234.220136
    [2] 焦毅, 徐刚, 陈森玉, 等. 衍射极限储存环物理设计研究进展[J]. 强激光与粒子束, 2015, 27:045108 doi: 10.11884/HPLPB201527.045108

    Jiao Yi, Xu Gang, Chen Senyu, et al. Advances in physical design of diffraction-limited storage ring[J]. High Power Laser and Particle Beams, 2015, 27: 045108 doi: 10.11884/HPLPB201527.045108
    [3] Hettel R. DLSR design and plans: an international overview[J]. Journal of Synchrotron Radiation, 2014, 21(5): 843-855. doi: 10.1107/S1600577514011515
    [4] Riemann B, Streun A. Low emittance lattice design from first principles: reverse bending and longitudinal gradient bends[J]. Physical Review Accelerators and Beams, 2019, 22: 021601. doi: 10.1103/PhysRevAccelBeams.22.021601
    [5] Kashikhin V S, Borland M, Chlachidze G, et al. Longitudinal gradient dipole magnet prototype for APS at ANL[J]. IEEE Transactions on Applied Superconductivity, 2016, 26: 4002505.
    [6] Saeidi F, Pourimani R, Rahighi J, et al. Normal conducting superbend in an ultralow emittance storage ring[J]. Physical Review Special Topics - Accelerators and Beams, 2015, 18: 082401. doi: 10.1103/PhysRevSTAB.18.082401
    [7] Le Bec G, Chavanne J, Villar F, et al. Magnets for the ESRF diffraction-limited light source project[J]. IEEE Transactions on Applied Superconductivity, 2016, 26: 4000107.
    [8] Citadini J, Vilela L N P, Basilio R, et al. Sirius-details of the new 3.2 T permanent magnet superbend[J]. IEEE Transactions on Applied Superconductivity, 2018, 28: 4101104.
    [9] Calzolaio C, Sanfilippo S, Sidorov S, et al. Design of a superconducting longitudinal gradient bend magnet for the SLS upgrade[J]. IEEE Transactions on Applied Superconductivity, 2017, 27: 4000305.
    [10] Streun A, Wrulich A. Compact low emittance light sources based on longitudinal gradient bending magnets[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 770: 98-112.
    [11] Juchno M, Venturini M, Virostek S, et al. Conceptual design of superbend and hardbend magnets for Advance Light Source upgrade project[J]. IEEE Transactions on Applied Superconductivity, 2020, 30: 4100505.
    [12] Vianna A A, Seraphim R M, Pereira A G C, et al. Conceptual design of a C-shaped 6.4 T superconducting dipole magnet[J]. IEEE Transactions on Applied Superconductivity, 2022, 32: 4002005.
    [13] Calzolaio C, Gabard A, Lerch P, et al. Longitudinal gradient bend magnets for the upgrade of the Swiss Light Source storage ring[J]. IEEE Transactions on Applied Superconductivity, 2020, 30: 4100905.
    [14] Zbanik J, Wang S T, Chen J Y, et al. ALS superbend magnet system[J]. IEEE Transactions on Applied Superconductivity, 2001, 11(1): 2531-2534. doi: 10.1109/77.920381
    [15] Chen C, Wang L, Feng G Y, et al. Electromagnetic design study of a superconducting longitudinal gradient bend magnet based on the HALF storage ring[J]. Journal of Instrumentation, 2023, 18: P06003. doi: 10.1088/1748-0221/18/06/P06003
    [16] 白正贺, 刘刚文, 何天龙, 等. 合肥先进光源储存环初步物理设计[J]. 强激光与粒子束, 2022, 34:104003 doi: 10.11884/HPLPB202234.220137

    Bai Zhenghe, Liu Gangwen, He Tianlong, et al. Preliminary physics design of the Hefei Advanced Light Facility storage ring[J]. High Power Laser and Particle Beams, 2022, 34: 104003 doi: 10.11884/HPLPB202234.220137
    [17] 张骁龙, 申飞, 任亭亭, 等. 基于LabVIEW的超导磁体数据监测与分析系统[J]. 仪表技术, 2021(2):38-42

    Zhang Xiaolong, Shen Fei, Ren Tingting, et al. LabVIEW-based superconducting magnet data monitor and analysis system[J]. Instrumentation Technology, 2021(2): 38-42
    [18] 周安若, 马毅龙, 陈登明, 等. 1J50软磁合金的温度稳定性研究[J]. 功能材料, 2014, 45(16):16030-16032 doi: 10.3969/j.issn.1001-9731.2014.16.007

    Zhou Anruo, Ma Yilong, Chen Dengming, et al. Study on the temperature-magnetic stability of 1J50 alloy[J]. Journal of Functional Materials, 2014, 45(16): 16030-16032 doi: 10.3969/j.issn.1001-9731.2014.16.007
    [19] 汪天龙, 邱清泉, 靖立伟, 等. 铁磁材料低温磁性能测量研究[J]. 稀有金属材料与工程, 2019, 48(3):898-904

    Wang Tianlong, Qiu Qingquan, Jing Liwei, et al. Measurement of magnetic properties of ferromagnetic materials at low temperature[J]. Rare Metal Materials and Engineering, 2019, 48(3): 898-904
    [20] 陈敏, 丘明, 肖立业, 等. 铁芯材料在低温下的磁性能的研究[J]. 电工电能新技术, 2003, 22(1):35-38 doi: 10.3969/j.issn.1003-3076.2003.01.009

    Chen Min, Qiu Ming, Xiao Liye, et al. Study on magnetic characteristics of the ferromagnetic materials at 77K[J]. Advanced Technology of Electrical Engineering and Energy, 2003, 22(1): 35-38 doi: 10.3969/j.issn.1003-3076.2003.01.009
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  203
  • HTML全文浏览量:  82
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-17
  • 修回日期:  2024-03-09
  • 录用日期:  2024-03-09
  • 网络出版日期:  2024-05-25
  • 刊出日期:  2024-07-04

目录

    /

    返回文章
    返回