留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率高效率开口波导阵列天线设计与实验

魏溢宏 李相强 苏奕宇 张健穹 王庆峰

魏溢宏, 李相强, 苏奕宇, 等. 高功率高效率开口波导阵列天线设计与实验[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.230421
引用本文: 魏溢宏, 李相强, 苏奕宇, 等. 高功率高效率开口波导阵列天线设计与实验[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.230421
Wei Yihong, Li Xiangqiang, Su Yiyu, et al. Design and experiment of open waveguide array antenna with high power and high efficiency[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.230421
Citation: Wei Yihong, Li Xiangqiang, Su Yiyu, et al. Design and experiment of open waveguide array antenna with high power and high efficiency[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.230421

高功率高效率开口波导阵列天线设计与实验

doi: 10.11884/HPLPB202436.230421
基金项目: 四川省科技厅重点研发项目(2022YFG0248)
详细信息
    作者简介:

    魏溢宏,1031652772@qq.com

    通讯作者:

    李相强,xiangqiang_li@163.com

  • 中图分类号: TN82

Design and experiment of open waveguide array antenna with high power and high efficiency

  • 摘要: 针对研究具有高功率容量、高效率和低剖面特性的阵列天线的应用需求,提出并设计了一种高功率容量高效率开口波导阵列天线。该天线由紧凑型1分16路波导功率分配网络、4×4矩形开口波导单元和陶瓷密封罩组成,通过设计开口波导尺寸、在开口波导表面加载E面金属栅条,使得辐射口面的电场分布更为均匀,提高了单元辐射增益。采用阶梯匹配结构实现了波导功率分配网络输出端口到开口波导单元口面的尺寸变换,同时提高了系统的阻抗带宽。加载在阵面上的陶瓷罩可使天线内部处于真空状态,提高了天线的功率容量。针对X波段高功率阵列天线的应用需求,优化设计了一个中心频率为9.5 GHz的16单元开口波导阵列,仿真结果表明其在9.25~9.65 GHz范围内口径效率均大于90%,反射系数均小于-13.9 dB。对天线进行了加工测试,测试得到的天线反射曲线和中心频率下的辐射方向图与仿真结果吻合良好,中心频率下天线增益为21.7 dBi。天线整体剖面高度为中心频率处波长的2倍,仿真得到的真空中功率容量为40 MW,具有高功率容量、高效率和低剖面的特点。
  • 图  1  高功率容量高效率开口波导阵列天线结构示意图

    Figure  1.  Schematic diagram of open waveguide array with high power capacity and high efficiency

    图  2  口径分布方向图

    Figure  2.  pattern of aperture distribution

    图  3  开口波导单元模型结构图

    Figure  3.  Model of open waveguide unit cell

    图  4  阶梯过渡段主要参数优化

    Figure  4.  Main parameters optimization of stepped transition section

    图  5  栅条参数对增益和反射系数的分析

    Figure  5.  Gain and reflection analysis of bar parameters

    图  6  开口波导单元加载栅条前后对比

    Figure  6.  Comparison of bar influence on open waveguide unit cell

    图  7  ET分支与耦合腔仿真模型及S参数曲线

    Figure  7.  simulation model and S-parameter curve of ET branch and coupled cavity

    图  8  波导功分网络与S参数曲线

    Figure  8.  Waveguide power division network and S-parameter curve

    图  9  开口波导阵列模型与仿真结果图

    Figure  9.  Model and simulation result of open waveguide array

    图  10  开口波导阵列电场分布图

    Figure  10.  Electric field distribution of open waveguide array

    图  11  反射特性测试场景与阵列实物图

    Figure  11.  Reflection characteristic testing scenario and physical array

    图  12  实测与仿真反射特性曲线对比

    Figure  12.  Comparison of reflection characteristic curves

    图  13  辐射特性测试场景

    Figure  13.  Radiation characteristic testing scenario

    图  14  9.5 GHz方向图实测结果

    Figure  14.  9.5 GHz radiation pattern measurement result

    表  1  口径分布与方向图特性

    Table  1.   Characteristics of aperture distribution and pattern

    aperture distribution $ {E_{\text{H}}} $ $ {{\boldsymbol{f}}_x} $ θH D
    cosine $ {E_0}\cos \Bigg(\dfrac{{\pi x}}{a}\Bigg) $ $ 2\pi \dfrac{{\cos ({k_x}a/2)}}{{{\pi ^2} - {{({k_x}a)}^2}}}{E_0} $ 11.3 $ \dfrac{{3651}}{{{\theta _{\text{E}}}}} $
    dual-cosine $ {E_1}\left| {\sin \Bigg(\dfrac{{\pi x}}{{a/2}}\Bigg)} \right| $ $ 8\pi a\dfrac{{{{\cos }^2}({k_x}a/4)}}{{4{\pi ^2} - {{({k_x}a)}^2}}}{E_1} $ 8.8 $ \dfrac{{4688}}{{{\theta _{\text{E}}}}} $
    uniform $ {E_2} $ $ a\dfrac{{\sin \left( {{k_x}a/2} \right)}}{{{k_x}a/2}}{E_2} $ 8.4 $ \dfrac{{4911}}{{{\theta _{\text{E}}}}} $
    下载: 导出CSV

    表  2  开口波导单元各项参数

    Table  2.   Parameters of open waveguide unit cell

    a/mm a1/mm a2/mm ah/mm b/mm b1/mm b2/mm
    17.00 29.48 35.00 38.50 5.45 9.00 12.8
    bh/mm l1/mm l2/mm l3/mm t/mm d/mm
    21.31 7.00 3.90 15.87 1.50 2.13
    下载: 导出CSV

    表  3  波导阵列天线性能对比

    Table  3.   Performance comparison of waveguide array antenna

    reference type profile height gain unit quantity aperture efficiency simulated or measured
    [8] waveguide slot fed horn array 3.4 λ 21.2 dBi 4×4 94% simulated
    [9] composite horn array 3.2 λ 42 dBi 64×8 80% simulated
    [10] ridged horn array 1.2 λ 38 dBi 32×32 67% simulated
    [11] ridge gap waveguide fed horn array 1.8 λ 26.5 dBi 4×4 85% simulated
    [12] mixed waveguide fed Gaussian horn array 20 λ 43 dBi 64×64 50% simulated
    this work open waveguide array 2 λ 22.6 dBi 4×4 90% simulated
    下载: 导出CSV
  • [1] Vlasov S N, Orlova I M. Quasioptical transformer which transforms the waves in a waveguide having a circular cross section into a highly directional wave beam[J]. Radiophysics and Quantum Electronics, 1974, 17(1): 115-119. doi: 10.1007/BF01037072
    [2] Courtney C C, Baum C E. The coaxial beam-rotating antenna (COBRA): theory of operation and measured performance[J]. IEEE Transactions on Antennas and Propagation, 2000, 48(2): 299-309. doi: 10.1109/8.833080
    [3] El Misilmani H M, Al-Husseini M, Kabalan K Y, et al. Improved vlasov antenna with curved cuts for high power microwaves[C]//2013 International Conference on High Performance Computing & Simulation (HPCS). 2013: 362-365.
    [4] Liang Tiezhu, Huang Wenhua, Shao Hao, et al. Design and near field characteristic of high power microwave dual-reflector antenna[C]//2012 International Conference on Microwave and Millimeter Wave Technology (ICMMT). 2012: 1-4.
    [5] Liang Yuan, Zhang Jianqiong, Liu Qingxiang, et al. High-power radial-line helical subarray for high-frequency applications[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(8): 4034-4041. doi: 10.1109/TAP.2018.2840840
    [6] Sang Lei, Wang Jingliang, Liu Ziyan, et al. A UWB metal waveguide slot array antenna based on hybrid resonant structural components[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(4): 923-927. doi: 10.1109/LAWP.2022.3228542
    [7] 李邓化, 姬芳芳, 郝翠, 等. 角锥喇叭天线设计与仿真研究[J]. 系统仿真学报, 2018, 30(10):3933-3938

    Li Denghua, Ji Fangfang, Hao Cui, et al. Study on design and simulation of pyramidal horn antenna[J]. Journal of System Simulation, 2018, 30(10): 3933-3938
    [8] Yamac Y E, Caliskan A, Turk A S, et al. Waveguide slot-fed horn antenna array with suppressed sidelobes[C]//2019 Signal Processing Symposium (SPSympo). 2019: 7-10.
    [9] 廖雪. 毫米波雷达平板阵列天线的研究与设计[D]. 西安: 西北大学, 2018

    Liao Xue. Research and design of millimeter wave radar planar array antenna[D]. Xi’an: Northwest University, 2018
    [10] 王斌驰. 基于扩散焊工艺的高效率E波段平板天线研究[D]. 成都: 电子科技大学, 2018

    Wang Binchi. Investigation of e-band high efficiency plate array antenna using diffusion bonding techniques[D]. Chengdu: University of Electronic Science and Technology of China, 2018
    [11] Vosoogh A, Kildal P S, Vassilev V, et al. E-band 3-D metal printed wideband planar horn array antenna[C]//2016 International Symposium on Antennas and Propagation (ISAP). 2016: 304-305.
    [12] Gueye M B, Ouslimani H H, Burokur S N, et al. Antenna array for point-to-point communication in E-band frequency range[C]//2011 IEEE International Symposium on Antennas and Propagation (APSURSI). 2011: 2077-2079.
    [13] Milligan T A. 现代天线设计[M]. 郭玉春, 方加云, 张光生, 译. 2版. 北京: 电子工业出版社, 2018

    Milligan T A. Modern antenna design[M]. Guo Yuchun, Fang Jiayun, Zhang Guangsheng, trans. 2nd ed. Beijing: Publishing House of Electronics Industry, 2018
    [14] 马骁. 高功率微波阵列天线若干关键技术研究[D]. 成都: 电子科技大学, 2020

    Ma Xiao. Research on some key technologies of high-power research on some key technologies of high-power[D]. Chengdu: University of Electronic Science and Technology of China, 2020
    [15] Jameson R A. High brightness accelerators[C]//Proc of ASI Conference. 1986: 497.
    [16] 黄贵春, 李相强, 孔歌星, 等. 高功率内置弧形折线栅式极化转换天线罩的设计与实验研究[J]. 强激光与粒子束, 2022, 34:023001

    Huang Guichun, Li Xiangqiang, Kong Gexing, et al. Design and experimental study of high-power built-in curved meander-line polarization conversion radome[J]. High Power Laser and Particle Beams, 2022, 34: 023001
    [17] 荀涛, 杨汉武, 张建德. 一种重复脉冲同轴馈电型陶瓷真空界面[J]. 强激光与粒子束, 2016, 28:015012

    Xun Tao, Yang Hanwu, Zhang Jiande. A coaxial ceramic vacuum interface for repetitive operated pulsed power source[J]. High Power Laser and Particle Beams, 2016, 28: 015012
  • 加载中
计量
  • 文章访问数:  25
  • HTML全文浏览量:  9
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-30
  • 修回日期:  2024-03-13
  • 录用日期:  2024-02-06
  • 网络出版日期:  2024-04-10

目录

    /

    返回文章
    返回