留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉冲驱动等离子体射流中活性粒子空间分布规律

包涵春 关银霞 王世强 唐诗雅 李超 郭亚逢

包涵春, 关银霞, 王世强, 等. 脉冲驱动等离子体射流中活性粒子空间分布规律[J]. 强激光与粒子束, 2024, 36: 055023. doi: 10.11884/HPLPB202436.230422
引用本文: 包涵春, 关银霞, 王世强, 等. 脉冲驱动等离子体射流中活性粒子空间分布规律[J]. 强激光与粒子束, 2024, 36: 055023. doi: 10.11884/HPLPB202436.230422
Bao Hanchun, Guan Yinxia, Wang Shiqiang, et al. Spatial distribution of active particles in pulsed driven plasma jet[J]. High Power Laser and Particle Beams, 2024, 36: 055023. doi: 10.11884/HPLPB202436.230422
Citation: Bao Hanchun, Guan Yinxia, Wang Shiqiang, et al. Spatial distribution of active particles in pulsed driven plasma jet[J]. High Power Laser and Particle Beams, 2024, 36: 055023. doi: 10.11884/HPLPB202436.230422

脉冲驱动等离子体射流中活性粒子空间分布规律

doi: 10.11884/HPLPB202436.230422
基金项目: 中国石化科技部项目(KL323003)
详细信息
    作者简介:

    包涵春,baohc.qday@sinopec.com

    通讯作者:

    郭亚逢,guoyf.qday@sinopec.com

  • 中图分类号: O433.1

Spatial distribution of active particles in pulsed driven plasma jet

  • 摘要: 为探究大气压脉冲驱动等离子体射流中活性粒子空间分布特性,采用同轴双环等离子体射流反应器,在外施脉冲激励驱动下,研究各活性粒子在不同电离段的特征峰相对强度沿轴向空间的变化规律。结果表明:在脉冲激励等离子体射流所有测量点位均能检测到NO、OH、N2、N2+、He等活性粒子特征峰,其中以OH、N2、N2+粒子所对应的发射光谱谱带及特征峰较为显著;在高压电极和接地电极之间的电场驱动电离段,活性粒子NO、OH、N2活性粒子的特征峰相对强度在靠近高压电极和接地电极区域较高,而在在两电极中间的区域相对强度较低,不同激发能级He、N2+特征峰相对强度沿气流方向逐渐降低;在接地电极至反应器管口的半开放离子激发段,活性粒子NO、OH以及不同能级N2、N2+、He特征峰的相对强度轴向分布呈现出随着气流方向逐渐降低的趋势;在反应器管口至等离子体射流末端区域的开放离子激发段,活性粒子OH、NO与不同能级He特征峰的相对强度轴向分布随气体流动方向逐渐减弱,不同能级N2、N2+特征峰的相对强度呈现出先增后减的规律,为脉冲驱动等离子体射流能量传递过程与反应机理的深入研究提供支撑。
  • 图  1  脉冲驱动等离子体射流测量系统

    Figure  1.  Pulse driven plasma jet measurement system

    图  2  同轴双环等离子体反应器

    Figure  2.  Coaxial double ring plasma generator

    图  3  电场驱动电离段(I段)脉冲氦气等离子体射流发射光谱特性

    Figure  3.  Spectral characteristics of pulsed helium plasma jet emission from electric field driven ionization section (section I )

    图  4  不同频率下He等离子体射流发射光谱特性

    Figure  4.  Spectral characteristics of He plasma jet emission at different frequencies

    图  5  主要活性粒子特征峰相对强度随频率变化规律

    Figure  5.  Variation law of relative intensity of characteristic peaks of main active particles with frequency

    图  6  脉冲氦气等离子体射流电场驱动电离段发射光谱特性

    Figure  6.  Spectral characteristics of pulsed helium plasma jet emission from electric field driven ionization section

    图  7  电场驱动电离段主要活性粒子特征峰相对强度变化规律

    Figure  7.  Variation law of the relative intensity of the characteristic peaks of the main active particles in electric field driven ionization section

    图  8  脉冲氦气等离子体射流半开放离子激发段发射光谱特性

    Figure  8.  Spectral characteristics of pulsed helium plasma jet emission from semi open ion excitation section

    图  9  半开放离子激发段主要活性粒子特征峰相对强度变化规律

    Figure  9.  Variation law of the relative intensity of the characteristic peaks of the main active particles in semi open ion excitation section

    图  10  脉冲氦气等离子体射流开放离子激发段发射光谱特性

    Figure  10.  Spectral characteristics of pulsed helium plasma jet emission from open ion excitation section

    图  11  开放离子激发段主要活性粒子特征峰相对强度变化规律

    Figure  11.  Variation law of the relative intensity of the characteristic peaks of the main active particles in open ion excitation section

  • [1] 金杞糠. 脉冲低温等离子体射流用于灭菌和凝血的实验研究[D]. 杭州: 浙江大学, 2019

    Jin Qikang. Experimental study on microorganism disinfection and blood coagulation using a pulsed cold plasma jet[D]. Hangzhou: Zhejiang University, 2019
    [2] Kuo C M, Wang Shumei, Huang C. Improved CoQ10 production of Rhodobacter sp. Treated by atmospheric pressure capacitive coupled radio frequency plasma jet[J]. High Energy Chemistry, 2022, 56(6): 461-467. doi: 10.1134/S0018143922060042
    [3] 夏文杰, 刘定新. Ar等离子体射流处理乙醇水溶液的放电特性及灭菌效应[J]. 电工技术学报, 2021, 36(4):765-776

    Xia Wenjie, Liu Dingxin. Discharge characteristics and bactericidal effect of Ar plasma jet treating ethanol aqueous solution[J]. Transactions of China Electrotechnical Society, 2021, 36(4): 765-776
    [4] Khan T M, Alves G A S, Iqbal A. Processing laser ablated plasmonic nanoparticle aerosols with nonthermal dielectric barrier discharge jets of argon and helium and plasma induced effects[J]. Scientific Reports, 2023, 13: 77. doi: 10.1038/s41598-022-27294-5
    [5] 邓成志, 韩若愚, 连秀云, 等. 大气压等离子体射流放电参数对沉积氧化钛薄膜特性的影响[J]. 石油学报(石油加工), 2023, 39(5):1070-1081

    Deng Chengzhi, Han Ruoyu, Lian Xiuyun, et al. Effect of atmospheric pressure plasma jet discharge parameters on the characteristics of deposited titanium oxide films[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2023, 39(5): 1070-1081
    [6] 于锦禄, 黄丹青, 王思博, 等. 等离子体点火与助燃技术在航空发动机上的应用[J]. 航空发动机, 2018, 44(3):12-20

    Yu Jinlu, Huang Danqing, Wang Sibo, et al. Application of plasma ignition and assisted combustion of aeroengine[J]. Aeroengine, 2018, 44(3): 12-20
    [7] 唐诗雅, 刘全桢, 王世强, 等. 大气压脉冲介质阻挡放电等离子体研究进展[J]. 安全、健康和环境, 2019, 19(7):70-74

    Tang Shiya, Liu Quanzhen, Wang Shiqiang, et al. Research progress of atmospheric pressure pulsed dielectric barrier discharges[J]. Safety Health & Environment, 2019, 19(7): 70-74
    [8] 刘伊静. 大气压等离子体射流及其降解染料废水应用[D]. 上海: 东华大学, 2023

    Liu Yijing. Atmospheric pressure plasma jet and its application in the degradation of dye wastewater[D]. Shanghai: Donghua University, 2023
    [9] 张波, 汪立峰, 刘峰, 等. 交流和纳秒脉冲激励氦气中等离子体射流阵列放电特性比较[J]. 电工技术学报, 2019, 34(6):1319-1328

    Zhang Bo, Wang Lifeng, Liu Feng, et al. Comparison on discharge characteristics of the helium plasma jet array excited by alternating current and nanosecond pulse voltage[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1319-1328
    [10] 张晋, 袁召, 陈立学, 等. 真空电弧等离子体发射光谱诊断[J]. 强激光与粒子束, 2021, 33:065014 doi: 10.11884/HPLPB202133.210116

    Zhang Jin, Yuan Zhao, Chen Lixue, et al. Vacuum arc plasma emission spectroscopy diagnosis[J]. High Power Laser and Particle Beams, 2021, 33: 065014 doi: 10.11884/HPLPB202133.210116
    [11] Shashurin A, Keidar M. Experimental approaches for studying non-equilibrium atmospheric plasma jets[J]. Physics of Plasmas, 2015, 22: 122002. doi: 10.1063/1.4933365
    [12] Lazarou C, Anastassiou C, Topala I, et al. The effect of Penning ionization reactions on the evolution of He with O2 admixtures plasma jets[J]. Journal of Physics D:Applied Physics, 2023, 56: 065203. doi: 10.1088/1361-6463/acb1c1
    [13] Zhang Bo, Zhu Ying, Liu Feng, et al. The influence of grounded electrode positions on the evolution and characteristics of an atmospheric pressure argon plasma jet[J]. Plasma Science and Technology, 2017, 19: 064001. doi: 10.1088/2058-6272/aa629f
    [14] Yonemori S, Nakagawa Y, Ono R, et al. Measurement of OH density and air-helium mixture ratio in an atmospheric-pressure helium plasma jet[J]. Journal of Physics D:Applied Physics, 2012, 45: 225202. doi: 10.1088/0022-3727/45/22/225202
    [15] 吴淑群, 董熙, 裴学凯, 等. 基于激光诱导荧光法诊断大气压低温等离子体射流中OH自由基和O原子的时空分布[J]. 电工技术学报, 2017, 32(8):82-94

    Wu Shuqun, Dong Xi, Pei Xuekai, et al. Laser induced fluorescence diagnostics of the temporal and spatial distribution of OH radicals and O atom in a low temperature plasma jet at atmospheric pressure[J]. Transactions of China Electrotechnical Society, 2017, 32(8): 82-94
    [16] 宋鹏, 李政楷, 陈雷, 等. 大气压低温氦等离子体射流的诊断研究[J]. 光谱学与光谱分析, 2021, 41(6):1874-1879

    Song Peng, Li Zhengkai, Chen Lei, et al. Diagnosis of atmospheric pressure helium cryogenic plasma jet[J]. Spectroscopy and Spectral Analysis, 2021, 41(6): 1874-1879
    [17] 赵娜, 吴凯玥, 陈俊宇, 等. 大直径射流的放电特性及其等离子体参数和活性粒子分布的光谱诊断[J]. 光谱学与光谱分析, 2021, 41(8):2644-2648

    Zhao Na, Wu Kaiyue, Chen Junyu, et al. Study on spectral characteristics of large diameter plasma jet[J]. Spectroscopy and Spectral Analysis, 2021, 41(8): 2644-2648
  • 加载中
图(11)
计量
  • 文章访问数:  34
  • HTML全文浏览量:  13
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-30
  • 修回日期:  2024-04-02
  • 录用日期:  2024-04-01
  • 网络出版日期:  2024-04-09
  • 刊出日期:  2024-04-28

目录

    /

    返回文章
    返回