留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚合物真空绝缘子表面二级微结构

霍艳坤 刘文元 何亚姣 柯昌凤 蔡利兵 白现臣 程军

霍艳坤, 刘文元, 何亚姣, 等. 聚合物真空绝缘子表面二级微结构[J]. 强激光与粒子束, 2024, 36: 055017. doi: 10.11884/HPLPB202436.230423
引用本文: 霍艳坤, 刘文元, 何亚姣, 等. 聚合物真空绝缘子表面二级微结构[J]. 强激光与粒子束, 2024, 36: 055017. doi: 10.11884/HPLPB202436.230423
Huo Yankun, Liu Wenyuan, He Yajiao, et al. Two-stage microstructure on surface of vacuum polymer insulators[J]. High Power Laser and Particle Beams, 2024, 36: 055017. doi: 10.11884/HPLPB202436.230423
Citation: Huo Yankun, Liu Wenyuan, He Yajiao, et al. Two-stage microstructure on surface of vacuum polymer insulators[J]. High Power Laser and Particle Beams, 2024, 36: 055017. doi: 10.11884/HPLPB202436.230423

聚合物真空绝缘子表面二级微结构

doi: 10.11884/HPLPB202436.230423
基金项目: 国家自然科学基金项目 (5230021962)
详细信息
    作者简介:

    霍艳坤,huoyankun@nint.ac.cn

  • 中图分类号: TM215.3

Two-stage microstructure on surface of vacuum polymer insulators

  • 摘要: 为研究绝缘子表面二级微结构的耐压提升机制,将表面二级微结构拆分为两种子结构,也即是表面微孔结构与表面微槽结构,并通过复合材料制备、激光处理、酸液选择性腐蚀等方式制备出表面二级微结构与相应的两种子结构。对三种结构分别进行沿面耐压性能测试,结果表明表面微孔与表面微槽均能有效地提升绝缘子的真空沿面耐压性能,而二者组合形成的表面二级微结构能够进一步提升绝缘子的真空沿面耐压性能。该结果表明通过将表面结构进行合理的组合能够实现对绝缘子表面闪络发展的多重、协同抑制,进一步提升绝缘子的真空沿面耐压水平。
  • 图  1  二级微结构的改进、分解及其制备过程示意图

    Figure  1.  Schematic of the improvement, separation of the two-stage microstructure and the preparation process of the three microstructures

    图  2  闪络电压测试图解

    Figure  2.  Illustration of the flashover voltage test

    图  3  三种微结构的制备结果

    Figure  3.  Preparation results of the three kinds of microstructures

    图  4  三种绝缘子的真空沿面闪络电压

    Figure  4.  Results of the flashover voltage test of the three kinds of microstructures

    图  5  三种微结构的二次电子发射系数

    Figure  5.  Secondary electron emission yield of the three kinds of microstructures

    图  6  不同微结构的沿面闪络抑制机制

    Figure  6.  Surface flashover suppression mechanism of different microstructures

    表  1  三种表面微结构参数表

    Table  1.   List of the parameters of the three kinds of microstructures

    two-stage microstructure surface micro groove surface micro hole
    group 1 depth 200 μm, 12 lines/5 mm, 5.5 μm 4% depth 200 μm, 12 lines/5 mm 5.5 μm 4%
    group 2 depth 200 μm, 12 lines/5 mm, 2.5 μm 6% depth 200 μm, 12 lines/5 mm 2.5 μm 6%
    group 3 depth 200 μm, 15 lines/5 mm, 5.5 μm 4% depth 200 μm, 15 lines/5 mm 5.5 μm 4%
    group 4 depth 200 μm, 15 lines/5 mm, 2.5 μm 6% depth 200 μm, 15 lines/5 mm 2.5 μm 6%
    下载: 导出CSV
  • [1] Zhang Guanjun, Su Guoqiang, Song Baipeng, et al. Pulsed flashover across a solid dielectric in vacuum[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25(6): 2321-2339. doi: 10.1109/TDEI.2018.007133
    [2] Gleizer J Z, Krasik Y E, Leopold J. Time- and space-resolved light emission and spectroscopic research of the flashover plasma[J]. Journal of Applied Physics, 2015, 117: 073301. doi: 10.1063/1.4913213
    [3] Harris J R, Blackfield D, Caporaso G J, et al. Vacuum insulator development for the dielectric wall accelerator[J]. Journal of Applied Physics, 2008, 104: 023301. doi: 10.1063/1.2956702
    [4] Leopold J G, Leibovitz C, Navon I, et al. Different approach to pulsed high-voltage vacuum-insulation design[J]. Physical Review Accelerators and Beams, 2007, 10: 060401. doi: 10.1103/PhysRevSTAB.10.060401
    [5] Miller H C. Flashover of insulators in vacuum: the last twenty years[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(6): 3641-3657. doi: 10.1109/TDEI.2015.004702
    [6] Zhang Penghao, Zhang Shuai, Kong Fei, et al. Atmospheric-pressure plasma jet deposition of bumpy coating improves polypropylene surface flashover performance in vacuum[J]. Surface and Coatings Technology, 2020, 387: 125511. doi: 10.1016/j.surfcoat.2020.125511
    [7] Kong Fei, Zhang Penghao, Yu Weixin, et al. Enhanced surface insulating performance for polystyrene by atmospheric pressure plasma jet deposition[J]. Applied Surface Science, 2020, 527: 146826. doi: 10.1016/j.apsusc.2020.146826
    [8] Wang Chao, Li Wendong, Guo Jia, et al. Unraveling the role of surface molecular structure on vacuum flashover for fluorinated copolymers[J]. Applied Surface Science, 2020, 505: 144432. doi: 10.1016/j.apsusc.2019.144432
    [9] Zhou Rundong, Sun Guangyu, Song Baipeng, et al. Mechanism of F2/N2 fluorination mitigating vacuum flashover of polymers[J]. Journal of Physics D:Applied Physics, 2019, 52: 375304. doi: 10.1088/1361-6463/ab2583
    [10] Harris J R. A tutorial on vacuum surface flashover[J]. IEEE Transactions on Plasma Science, 2018, 46(6): 1872-1880. doi: 10.1109/TPS.2017.2759248
    [11] Sun Guangyu, Guo Baohong, Mu Haibao, et al. Flashover strength improvement and multipactor suppression in vacuum using surface charge pre-conditioning on insulator[J]. Journal of Applied Physics, 2018, 124: 134102. doi: 10.1063/1.5048063
    [12] Wang Ruixue, Lin Haofan, Gao Yuan, et al. Inorganic nanofilms for surface charge control on polymer surfaces by atmospheric-pressure plasma deposition[J]. Journal of Applied Physics, 2017, 122: 233302. doi: 10.1063/1.5008645
    [13] Kong Fei, Chang Chao, Ma Yiyang, et al. Surface modifications of polystyrene and their stability: a comparison of DBD plasma deposition and direct fluorination[J]. Applied Surface Science, 2018, 459: 300-308. doi: 10.1016/j.apsusc.2018.07.211
    [14] Li Shengtao, Huang Qifeng, Zhang Tuo, et al. New organic insulation system to improve the surface-flashover characteristics in vacuum[J]. IEEE Transactions on Plasma Science, 2010, 38(12): 3434-3441. doi: 10.1109/TPS.2010.2080288
    [15] Sun Guangyu, Guo Baohong, Song Baipeng, et al. Simulation on the dynamic charge behavior of vacuum flashover developing across insulator involving outgassing[J]. Physics of Plasmas, 2018, 25: 063502. doi: 10.1063/1.5025209
    [16] Cai Libing, Wang Jianguo, Zhu Xiangqin, et al. Two-dimensional simulation research of secondary electron emission avalanche discharge on vacuum insulator surface[J]. Physics of Plasmas, 2015, 22: 013502. doi: 10.1063/1.4905640
    [17] Miller H C, Ney R J. Gases released by surface flashover of insulators[J]. Journal of Applied Physics, 1988, 63(3): 668-673. doi: 10.1063/1.340055
    [18] Li Jian, Huang Rongjin, Wang Yongguang, et al. DC surface flashover characteristics of G-11CR in vacuum from room temperature to cryogenic temperatures[J]. Cryogenics, 2019, 101: 53-57. doi: 10.1016/j.cryogenics.2019.03.008
    [19] Gleizer J Z, Krasik Y E, Dai U, et al. Vacuum surface flashover: experiments and simulations[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21(5): 2394-2404. doi: 10.1109/TDEI.2014.004628
    [20] Pillai A S, Hackam R. Surface flashover of solid insulators in atmospheric air and in vacuum[J]. Journal of Applied Physics, 1985, 58(1): 146-153. doi: 10.1063/1.335700
    [21] Cheng Guoxin, Cai Dan, Hong Zhiqiang, et al. Variation in time lags of vacuum surface flashover utilizing a periodically grooved dielectric[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20(5): 1942-1950. doi: 10.1109/TDEI.2013.6633728
    [22] Chang C, Huang H J, Liu G Z, et al. The effect of grooved surface on dielectric multipactor[J]. Journal of Applied Physics, 2009, 105: 123305. doi: 10.1063/1.3153947
    [23] Naruse H, Saito H, Sakaki M, et al. Flashover mechanisms of bridged vacuum gaps based on cathode electric field measurement[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(1): 597-603. doi: 10.1109/TDEI.2014.004566
    [24] Yamamoto O, Markon S, Morii H. Depression of insulator charging in vacuum by partial mechanical processing[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(3): 606-612. doi: 10.1109/TDEI.2007.369520
    [25] Guo Baohong, Sun Guangyu, Zhang Shu, et al. Mechanism of vacuum flashover on surface roughness[J]. Journal of Physics D: Applied Physics, 2019, 52: 215301. doi: 10.1088/1361-6463/ab05a0
    [26] Huo Yankun, Liu Wenyuan, Ke Changfeng, et al. Sharp improvement of flashover strength from composite micro-textured surfaces[J]. Journal of Applied Physics, 2017, 122: 115105. doi: 10.1063/1.4991934
    [27] 霍艳坤, 刘文元, 柯昌凤, 等. 聚合物绝缘子表面微结构构筑及闪络性能[J]. 强激光与粒子束, 2018, 30:035006 doi: 10.11884/HPLPB201830.170280

    Huo Yankun, Liu Wenyuan, Ke Changfeng, et al. Construction of micro-structure on polymer insulators and their surface flashover characteristics[J]. High Power Laser and Particle Beams, 2018, 30: 035006 doi: 10.11884/HPLPB201830.170280
    [28] Pivi M, King F K, Kirby R E, et al. Sharp reduction of the secondary electron emission yield from grooved surfaces[J]. Journal of Applied Physics, 2008, 104: 104904. doi: 10.1063/1.3021149
    [29] Cai Libing, Wang Jianguo, Cheng Guoxin, et al. Simulation of multipactor on the rectangular grooved dielectric surface[J]. Physics of Plasmas, 2015, 22: 113506. doi: 10.1063/1.4935385
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  23
  • HTML全文浏览量:  12
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-03
  • 修回日期:  2024-04-05
  • 录用日期:  2024-04-05
  • 网络出版日期:  2024-04-15
  • 刊出日期:  2024-04-28

目录

    /

    返回文章
    返回