留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于单束强激光和固体靶相互作用的瞬态等离子体密度光栅产生研究

祝旭忠 黄渊凌 王加祥

祝旭忠, 黄渊凌, 王加祥. 基于单束强激光和固体靶相互作用的瞬态等离子体密度光栅产生研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240008
引用本文: 祝旭忠, 黄渊凌, 王加祥. 基于单束强激光和固体靶相互作用的瞬态等离子体密度光栅产生研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240008
Zhu Xuzhong, Huang Yuanling, Wang Jiaxiang. Generation of Transient plasma density grating induced by interaction between single laser pulse and solid-density plasma[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240008
Citation: Zhu Xuzhong, Huang Yuanling, Wang Jiaxiang. Generation of Transient plasma density grating induced by interaction between single laser pulse and solid-density plasma[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240008

基于单束强激光和固体靶相互作用的瞬态等离子体密度光栅产生研究

doi: 10.11884/HPLPB202436.240008
基金项目: 上海市科委科技创新项目(18JC1412700)
详细信息
    作者简介:

    祝旭忠,153761902@qq.com

    通讯作者:

    王加祥,jxwang@phy.ecnu.edu.cn

  • 中图分类号: O437

Generation of Transient plasma density grating induced by interaction between single laser pulse and solid-density plasma

  • 摘要: 通过1维粒子模拟(PIC)的方法,发现利用单束超短激光与固体密度的等离子体碳靶相互作用可以产生瞬态等离子体密度光栅。研究表明,当选取合适的激光以及等离子体参数,等离子靶后表面的反射激光与入射激光通过干涉形成驻波,然后等离子体在有质动力势和电荷分离场的调制下演化出瞬态等离子体数密度光栅。当波长在40~130 nm之间的紫外飞秒激光束和亚临界密度等离子体相互作用时,瞬态等离子密度光栅的稳定时间可达数十个皮秒,峰值密度最大可达初始数密度二十倍以上。和传统的通过双激光束干涉或者梯度靶形成等离子体光栅的方案相比,该方案只需要单束激光和均匀固体靶相互作用就可以形成,且具有更高的对比度,在实验上更容易实现。
  • 图  1  激光脉冲与目标靶相互作用示意图

    Figure  1.  Schematic of the interaction between the laser pulse and the target

    图  2  离子[(a)]和电子[(b)]数密度分布随时间演化。

    Figure  2.  Time evolution of the ion [(a)] and electron [(b)] number density

    图  3  t=68.2 ps时刻目标靶离子与电子的数密度空间分布。

    Figure  3.  The number density distribution of ion and electron at t=68.2 ps

    图  4  电场强度平方以及电荷分离场强度随时间演化

    Figure  4.  Evolution of the square of electric field intensity and the induced electrostatic field intensity

    图  5  离子数密度分布随时间演化

    Figure  5.  Time evolution of the ion number density

    图  6  对靶厚为$ 400\;\mathrm{n}\mathrm{m} $的固体靶,光栅峰值密度对激光波长的依赖关系

    Figure  6.  Relationship between peak number density and laser wavelength when the target thickness is $ 400\;{\mathrm{nm}} $

    图  7  在不同的入射激光波长下,光栅峰值密度对靶厚度的依赖关系

    Figure  7.  Relationship between peak number density and target depth for different laser wavelengths

    图  8  $ d=1\;000\;\mathrm{n}\mathrm{m} $的厚靶,光栅峰值密度对激光波长的依赖关系

    Figure  8.  Relationship between peak number density and laser wavelength when $ d=1\;000\;\mathrm{n}\mathrm{m} $

    图  9  光栅峰值密度对激光功率的依赖关系

    Figure  9.  Relationship between peak number density and laser pulse intensities

    图  10  光栅达到峰值密度的时间对激光功率的关系

    Figure  10.  Relationship between the time at peak number density and laser pulse intensities

  • [1] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 56(3): 219-221. doi: 10.1016/0030-4018(85)90120-8
    [2] Mourou G A, Tajima T, Bulanov S V. Optics in the relativistic regime[J]. Reviews of Modern Physics, 2006, 78(1): 309-371.
    [3] Bucksbaum P H, Bashkansky M, Freeman R R, et al. Suppression of multiphoton ionization with circularly polarized coherent light[J]. Physical Review Letters, 1986, 56(24): 2590-2593. doi: 10.1103/PhysRevLett.56.2590
    [4] Augst S, Meyerhofer D D, Strickland D, et al. Laser ionization of noble gases by coulomb-barrier suppression[J]. Journal of the Optical Society of America B, 1991, 8(4): 858-867. doi: 10.1364/JOSAB.8.000858
    [5] Hu Mengyun, Shi Shencheng, Yan Min, et al. Femtosecond laser-induced breakdown spectroscopy by multidimensional plasma grating[J]. Journal of Analytical Atomic Spectrometry, 2022, 37(4): 841-848. doi: 10.1039/D1JA00376C
    [6] Hu Mengyun, Peng Junsong, Niu Sheng, et al. Plasma-grating-induced breakdown spectroscopy[J]. Advanced Photonics, 2020, 2: 065001.
    [7] Li Meng, Yuan T, Xu Y X, et al. Particle in cell simulation on plasma grating contrast enhancement induced by infrared laser pulse[J]. Physics of Plasmas, 2018, 25: 053106. doi: 10.1063/1.5019990
    [8] Wu Huichun, Sheng Zhengming, Zhang Qiuju, et al. Manipulating ultrashort intense laser pulses by plasma Bragg gratings[J]. Physics of Plasmas, 2005, 12: 113103. doi: 10.1063/1.2126587
    [9] Edwards M R, Michel P. Plasma transmission gratings for compression of high-intensity laser pulses[J]. Physical Review Applied, 2022, 18: 024026. doi: 10.1103/PhysRevApplied.18.024026
    [10] Chen Qiang, Maslarova D, Wang Junzhi, et al. Transient relativistic plasma grating to tailor high-power laser fields, Wakefield plasma waves, and electron injection[J]. Physical Review Letters, 2022, 128: 164801. doi: 10.1103/PhysRevLett.128.164801
    [11] Plaja L, Roso L. Analytical description of a plasma diffraction grating induced by two crossed laser beams[J]. Physical Review E, 1997, 56(6): 7142-7146. doi: 10.1103/PhysRevE.56.7142
    [12] Plaja L, Roso L, Jarque E C. Study of laser-induced plasma surface inhomogeneities[J]. Laser Physics, 1999, 9(1): 184-189.
    [13] Shi Liping, Li Wenxue, Wang Yongdong, et al. Generation of high-density electrons based on plasma grating induced Bragg diffraction in air[J]. Physical Review Letters, 2011, 107: 095004. doi: 10.1103/PhysRevLett.107.095004
    [14] Sheng Z M, Zhang J, Umstadter D. Plasma density gratings induced by intersecting laser pulses in underdense plasmas[J]. Applied Physics B, 2003, 77(6/7): 673-680.
    [15] Smith J R, Orban C, Ngirmang G K, et al. Particle-in-cell simulations of density peak formation and ion heating from short pulse laser-driven ponderomotive steepening[J]. Physics of Plasmas, 2019, 26: 123103. doi: 10.1063/1.5108811
    [16] Arber T D, Bennett K, Brady C S, et al. Contemporary particle-in-cell approach to laser-plasma modelling[J]. Plasma Physics and Controlled Fusion, 2015, 57: 113001. doi: 10.1088/0741-3335/57/11/113001
    [17] Chen F F. Introduction to plasma physics[M]. New York: Plenum Press, 1974.
    [18] Ma H H, Weng Suming, Li P, et al. Growth, saturation, and collapse of laser-driven plasma density gratings[J]. Physics of Plasmas, 2020, 27: 073105. doi: 10.1063/5.0004529
  • 加载中
图(10)
计量
  • 文章访问数:  20
  • HTML全文浏览量:  10
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-04
  • 修回日期:  2024-09-25
  • 录用日期:  2024-03-19
  • 网络出版日期:  2024-10-17

目录

    /

    返回文章
    返回