留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High-resolution reconstruction of the ablative RT instability flow field via convolutional neural networks

Xia Zhiyang Kuang Yuanyuan Lu Yan Yang Ming

夏治洋, 旷圆圆, 卢艳, 等. 基于卷积神经网络的烧蚀瑞利-泰勒不稳定性流场高分辨率重建[J]. 强激光与粒子束, 2024, 36: 122004. doi: 10.11884/HPLPB202436.240015
引用本文: 夏治洋, 旷圆圆, 卢艳, 等. 基于卷积神经网络的烧蚀瑞利-泰勒不稳定性流场高分辨率重建[J]. 强激光与粒子束, 2024, 36: 122004. doi: 10.11884/HPLPB202436.240015
Xia Zhiyang, Kuang Yuanyuan, Lu Yan, et al. High-resolution reconstruction of the ablative RT instability flow field via convolutional neural networks[J]. High Power Laser and Particle Beams, 2024, 36: 122004. doi: 10.11884/HPLPB202436.240015
Citation: Xia Zhiyang, Kuang Yuanyuan, Lu Yan, et al. High-resolution reconstruction of the ablative RT instability flow field via convolutional neural networks[J]. High Power Laser and Particle Beams, 2024, 36: 122004. doi: 10.11884/HPLPB202436.240015

基于卷积神经网络的烧蚀瑞利-泰勒不稳定性流场高分辨率重建

doi: 10.11884/HPLPB202436.240015
详细信息
  • 中图分类号: O357;

High-resolution reconstruction of the ablative RT instability flow field via convolutional neural networks

Funds: National Natural Science Foundation of China (11805003; 11947102; 12004005); Natural Science Foundation of Anhui Province (2008085MA16; 2008085QA26); University Synergy Innovation Program of Anhui Province (GXXT-2022-039); State Key Laboratory of Advanced Electromagnetic Technology (Grant No. AET 2024KF006)
More Information
  • 摘要:

    高分辨率流场数据在气象学、航空航天工程、高能物理等领域有着重要的应用价值。实验和数值模拟是两种获取高分辨率流场数据的主要途径。但是高昂的实验成本和仿真计算资源阻碍了研究者对流场演化的具体分析。随着深度学习技术的发展,卷积神经网络被用来实现流场的高分辨率重建。针对烧蚀瑞利-泰勒不稳定性流场重建提出了普通卷积神经网络模型和多重时间路径卷积神经网络模型。这两个模型可以在很短的时间内对流场进行高分辨率重建,极大地丰富了高分辨率重建技术在流体不稳定性研究中的应用。与普通卷积神经网络相比,多重时间路径卷积神经网络模型的误差较小,可以还原流场的更多细节。此外,还讨论了用于获取低分辨率流场的不同池化方法对卷积神经网络模型性能的影响。

  • Figure  1.  Schematic diagram of ordinary CNN structure

    Figure  2.  Schematic diagram of the structure of a multi-time-path CNN

    Figure  3.  Error maps of two convolutional neural network models

    Figure  4.  Comparison of reconstructed results with average pooling (r=4)

    Figure  5.  Comparison of reconstructed results with maximum pooling (r=4)

    Figure  6.  Comparison of the high-resolution reconstructed density data (weak nonlinear stage with ablation, disturbance wavelength=12 μm)

    Figure  7.  Comparison of the high-resolution reconstructed density data (classical linear stage, disturbance wavelength=12 μm)

    Figure  8.  Comparison of the high-resolution reconstructed density data (nonlinear stage with ablation, disturbance wavelength=12 μm)

    Figure  9.  Comparison of the high-resolution reconstructed density data (weak nonlinear stage with ablation, disturbance wavelength=30 μm)

  • [1] Adrian R J. Twenty years of particle image velocimetry[J]. Exp Fluids, 2005, 39: 159-169. doi: 10.1007/s00348-005-0991-7
    [2] Yan Chao, Yu Jian, Xu Jinglei, et al. On the achievements and prospects for the methods of computational fluid dynamics[J]. Adv Mech, 2001, 41(5): 562-589.
    [3] Kuang Yuanyang, Lu Yan, Lin Zhi, et al. Coupled model analysis of the ablative Rayleigh–Taylor instability[J]. Plasma Sci Technol, 2023, 25: 055201. doi: 10.1088/2058-6272/acac64
    [4] Fan Zhengfeng, Luo Jisheng, Ye Wenhua, et al. Weakly nonlinear ablative Rayleigh–Taylor instability at preheated ablation front[J]. Phys Plasmas, 2009, 16: 102104. doi: 10.1063/1.3236746
    [5] Ye Wenhua, Wang Lifeng, He Xiantu. Spike deceleration and bubble acceleration in the ablative Rayleigh-Taylor instability[J]. Phys Plasmas, 2010, 17: 122704. doi: 10.1063/1.3497006
    [6] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. doi: 10.1038/nature14539
    [7] Zhou Feiyan, Jin Linpeng, Dong Jun. Review of convolution neural network[J]. Chin J Comput, 2017, 40(6): 1229-1251. doi: 10.11897/SP.J.1016.2017.01229
    [8] Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proc IEEE, 1998, 86(11): 2278-2324. doi: 10.1109/5.726791
    [9] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Commun ACM, 2017, 60(6): 84-90. doi: 10.1145/3065386
    [10] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[DB/OL]. arXiv preprint arXiv: 1409.1556, 2014.
    [11] Szegedy C, Liu Wei, Jia Yangqing, et al. Going deeper with convolutions[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2015: 1-9.
    [12] He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016: 770-778.
    [13] Jin Xiaowei, Cheng Peng, Chen Wenli, et al. Prediction model of velocity field around circular cylinder over various Reynolds numbers by fusion convolutional neural networks based on pressure on the cylinder[J]. Phys Fluids, 2018, 30: 047105. doi: 10.1063/1.5024595
    [14] Sekar V, Jiang Qinghua, Shu Chang, et al. Fast flow field prediction over airfoils using deep learning approach[J]. Phys Fluids, 2019, 31: 057103. doi: 10.1063/1.5094943
    [15] Fukami K, Fukagata K, Taira K. Super-resolution reconstruction of turbulent flows with machine learning[J]. J Fluid Mech, 2019, 870: 106-120. doi: 10.1017/jfm.2019.238
    [16] Deng Zhiwen, He Chuangxin, Liu Yingzheng, et al. Super-resolution reconstruction of turbulent velocity fields using a generative adversarial network-based artificial intelligence framework[J]. Phys Fluids, 2019, 31: 125111. doi: 10.1063/1.5127031
    [17] Liu Bo, Tang Jiupeng, Huang Haibo, et al. Deep learning methods for super-resolution reconstruction of turbulent flows[J]. Phys Fluids, 2020, 32: 025105. doi: 10.1063/1.5140772
    [18] Zhou Xuhui, McClure J E, Chen Cheng, et al. Neural network–based pore flow field prediction in porous media using super resolution[J]. Phys Rev Fluid, 2022, 7: 074302. doi: 10.1103/PhysRevFluids.7.074302
    [19] Jagodinski E, Zhu Xingquan, Verma S. Inverse identification of dynamically important regions in turbulent flows using three-dimensional convolutional neural networks[J]. Phys Rev Fluids, 2023, 8: 094605. doi: 10.1103/PhysRevFluids.8.094605
    [20] Gallis M A, Koehler T P, Torczynski J R, et al. Direct simulation Monte Carlo investigation of the Rayleigh-Taylor instability[J]. Phys Rev Fluids, 2016, 1: 043403. doi: 10.1103/PhysRevFluids.1.043403
    [21] Fu Chengquan, Zhao Zhiye, Xu Xin, et al. Nonlinear saturation of bubble evolution in a two-dimensional single-mode stratified compressible Rayleigh-Taylor instability[J]. Phys Rev Fluids, 2022, 7: 023902. doi: 10.1103/PhysRevFluids.7.023902
    [22] Piriz A R, Cortázar O D, López Cela J J, et al. The Rayleigh-Taylor instability[J]. Am J Phys, 2006, 74(12): 1095-1098. doi: 10.1119/1.2358158
    [23] Zhong Baojiang, Lu Zhifang, Ji Jiahuan. Review on image interpolation techniques[J]. J Data Acquis Process, 2016, 31(6): 1083-1096.
    [24] Shi Wenzhe, Caballero J, Huszár F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016: 1874-1883.
    [25] Wang Mengjie, Yang Xiaomin, Anisetti M, et al. Image super-resolution via enhanced multi-scale residual network[J]. J Parallel Distrib Comput, 2021, 152: 57-66. doi: 10.1016/j.jpdc.2021.02.016
    [26] Kingma D P, Ba J. Adam: a method for stochastic optimization[C]//Proceedings of the 3rd International Conference on Learning Representations. 2015.
  • 加载中
图(9)
计量
  • 文章访问数:  134
  • HTML全文浏览量:  49
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-25
  • 修回日期:  2024-09-20
  • 录用日期:  2024-04-07
  • 网络出版日期:  2024-10-26
  • 刊出日期:  2024-11-08

目录

    /

    返回文章
    返回