留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蒙特卡罗模拟中物理模型对质子硼俘获治疗剂量学的影响

吴骏翔 邓力源 何贞岑 孙钊 胡智民

吴骏翔, 邓力源, 何贞岑, 等. 蒙特卡罗模拟中物理模型对质子硼俘获治疗剂量学的影响[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240019
引用本文: 吴骏翔, 邓力源, 何贞岑, 等. 蒙特卡罗模拟中物理模型对质子硼俘获治疗剂量学的影响[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240019
Wu Junxiang, Deng Liyuan, He Zhencen, et al. Effect of different physics lists in Monte Carlo simulation of proton boron capture therapy[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240019
Citation: Wu Junxiang, Deng Liyuan, He Zhencen, et al. Effect of different physics lists in Monte Carlo simulation of proton boron capture therapy[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240019

蒙特卡罗模拟中物理模型对质子硼俘获治疗剂量学的影响

doi: 10.11884/HPLPB202436.240019
基金项目: 国防基础科研计划项目(JCKYS2023212808);中央引导地方科技项目(2023ZYD0017)
详细信息
    作者简介:

    吴骏翔,wujunxiang@scszlyy.org.cn

    通讯作者:

    胡智民,huzhimin@scu.edu.cn

  • 中图分类号: R815.6

Effect of different physics lists in Monte Carlo simulation of proton boron capture therapy

  • 摘要: 比较了蒙特卡罗(MC)软件Geant4中不同物理过程对质子硼俘获治疗(PBCT)的剂量学影响。选取Geant4中FTFP、QBBC和QGSP三种物理过程,构建包含质子硼核反应的质子剂量沉积的模型,比较了80 MeV质子束选取三种物理过程在有无硼时的剂量分布,以及3 MeV质子束轰击纯硼时的核反应产物数据。三种物理过程在有无硼时水模体中的剂量分布无显著差异,一致性较好。FTFP物理过程获得的质子硼核反应产物与QBBC和QGSP物理过程相比差异较大。而QGSP物理过程得到的α粒子的产额、平均能量和能量范围与QBBC物理过程相比与实际情况吻合更好。综合评估三种物理过程中使用的非弹性散射模型以及模拟得到的核反应产物数据,Geant4中的QGSP物理过程更适用于PBCT的MC模拟研究。
  • 图  1  PBCT核反应过程示意图

    Figure  1.  Nuclear reaction of PBCT flow chart

    图  2  Geant4模拟示意图

    Figure  2.  Schematic overview of the Geant4 simulation

    图  3  三种物理过程的PDD和Yoon等PDD的比较

    Figure  3.  PDD of three physics lists in this study and compared with Yoon. et al

    图  4  三种物理过程有无硼的PDD比较

    Figure  4.  Relative energy deposition curves for proton with and without boron region of three physics lists

    图  5  三种物理过程有无硼的LDP比较

    Figure  5.  LDP curves for proton with and without boron region of three physics lists

    表  1  模拟中的材料组成

    Table  1.   Composition of material in MC

    materialwB/%wH/%wO/%wC/%wN/%wAr/%density/(g·cm−3)
    boron1002.08
    water11.1988.811
    air23.180.0275.521.281.205×10−3
    vacuum1.0×10−25
    下载: 导出CSV

    表  2  三种物理过程中的物理模型及反应截面

    Table  2.   Physics models and reaction cross-section of three physics lists

    physics lists type of modules models (particle and energy ranges) cross-sections
    FTFP_BERT hadron physics inelastic model Fritiof parton (FTF)
    (p,n, 3 GeV~100 TeV)
    p (G4BGGNucleonInelasticXS)
    n (G4NeutronInelasticXS)
    Bertini intranuclear cascade
    (p,n, 0~6 GeV)
    elastic model G4ChipsElasticModel
    (p,n, 0~100 TeV)
    p (G4BGGNucleonElasticXS)
    n (G4NeutronElasticXS)
    electromagnetic physics G4EmStandardPhysics(γ,e)
    QBBC hadron physics inelastic model Fritiof parton (FTF)
    (p,n, 3 GeV~100 TeV)
    p (G4ParticleInelasticXS)
    n (G4NeutronInelasticXS)
    Binary cascade
    (p,n, 0~1.5 GeV)
    Bertini (p,n, 1~6 GeV)
    elastic model G4ChipsElasticModel
    (p,n, 0~100 TeV)
    p (G4BGGNucleonElasticXS)
    n (G4NeutronElasticXS)
    electromagnetic physics G4EmStandardPhysics(γ,e)
    QGSP_BIC_AllHP hadron physics inelastic model Binary cascade
    (p,n, 0~6 GeV)
    p ≥20 MeV(G4BGGNucleonInelasticXS)
    n (G4NeutronInelasticXS)
    Quark-gluon String (QGS)
    (p,n, >12 GeV)
    Fritiof parton (FTF)
    (p,n, 3~25 GeV)
    elastic model G4ChipsElasticModel
    (p,n, 0~100 TeV)
    p (G4BGGNucleonElasticXS)
    n (G4NeutronElasticXS)
    electromagnetic physics G4EmStandardPhysics4(γ,e)
    下载: 导出CSV

    表  3  三种物理过程的质子硼核反应数据

    Table  3.   Nuclear reaction product data of PBCT with three physics lists

    energy/MeVphysics listyields of α/%mean energy of α/MeVenergy ranges of α//MeV
    3FTFP_BERT0.14.510.11~9.16
    QBBC7.64.170.35~9.23
    QGSP_BIC_AllHP3.25.590.01~9.58
    下载: 导出CSV
  • [1] Mohan R, Grosshans D. Proton therapy-Present and future[J]. Advanced Drug Delivery Reviews, 2017, 109: 26-44. doi: 10.1016/j.addr.2016.11.006
    [2] Yan Susu, Ngoma T A, Ngwa W, et al. Global democratisation of proton radiotherapy[J]. The Lancet Oncology, 2023, 24(6): e245-e254. doi: 10.1016/S1470-2045(23)00184-5
    [3] Lomax A J, Bortfeld T, Goitein G, et al. A treatment planning inter-comparison of proton and intensity modulated photon radiotherapy[J]. Radiotherapy and Oncology, 1999, 51(3): 257-271. doi: 10.1016/S0167-8140(99)00036-5
    [4] Stuschke M, Kaiser A, Abu-Jawad J, et al. Re-irradiation of recurrent head and neck carcinomas: comparison of robust intensity modulated proton therapy treatment plans with helical tomotherapy[J]. Radiation Oncology, 2013, 8: 93. doi: 10.1186/1748-717X-8-93
    [5] Kandula S, Zhu Xiaorong, Garden A S, et al. Spot-scanning beam proton therapy vs intensity-modulated radiation therapy for ipsilateral head and neck malignancies: a treatment planning comparison[J]. Medical Dosimetry, 2013, 38(4): 390-394. doi: 10.1016/j.meddos.2013.05.001
    [6] Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10 801 women in 17 randomised trials[J]. The Lancet, 2011, 378(9804): 1707-1716. doi: 10.1016/S0140-6736(11)61629-2
    [7] Partridge M, Ramos M, Sardaro A, et al. Dose escalation for non-small cell lung cancer: analysis and modelling of published literature[J]. Radiotherapy and Oncology, 2011, 99(1): 6-11. doi: 10.1016/j.radonc.2011.02.014
    [8] Deville C Jr, Jain A, Hwang W T, et al. Initial report of the genitourinary and gastrointestinal toxicity of post-prostatectomy proton therapy for prostate cancer patients undergoing adjuvant or salvage radiotherapy[J]. Acta Oncologica, 2018, 57(11): 1506-1514. doi: 10.1080/0284186X.2018.1487583
    [9] Leroy R, Benahmed N, Hulstaert F, et al. Proton therapy in children: a systematic review of clinical effectiveness in 15 pediatric cancers[J]. International Journal of Radiation Oncology Biology Physics, 2016, 95(1): 267-278. doi: 10.1016/j.ijrobp.2015.10.025
    [10] Karger C P, Peschke P. RBE and related modeling in carbon-ion therapy[J]. Physics in Medicine & Biology, 2018, 63: 01TR02.
    [11] Mein S, Klein C, Kopp B, et al. Assessment of RBE-weighted dose models for carbon ion therapy toward modernization of clinical practice at HIT: in vitro, in vivo, and in patients[J]. International Journal of Radiation Oncology Biology Physics, 2020, 108(3): 779-791.
    [12] Rackwitz T, Debus J. Clinical applications of proton and carbon ion therapy[J]. Seminars in Oncology, 2019, 46(3): 226-232. doi: 10.1053/j.seminoncol.2019.07.005
    [13] Li Yue, Li Xiaoman, Yang Jiancheng, et al. Flourish of proton and carbon ion radiotherapy in China[J]. Frontiers in Oncology, 2022, 12: 819905. doi: 10.3389/fonc.2022.819905
    [14] Paganetti H, Beltran C, Both S, et al. Roadmap: proton therapy physics and biology[J]. Physics in Medicine & Biology, 2021, 66: 05RM01.
    [15] Cao Wenhua, Khabazian A, Yepes P P, et al. Linear energy transfer incorporated intensity modulated proton therapy optimization[J]. Physics in Medicine & Biology, 2018, 63: 015013.
    [16] Bai Xuemin, Lim G, Wieser H P, et al. Robust optimization to reduce the impact of biological effect variation from physical uncertainties in intensity-modulated proton therapy[J]. Physics in Medicine & Biology, 2019, 64: 025004.
    [17] Yoon D K, Jung J, Suh T S. Application of proton boron fusion reaction to radiation therapy: a Monte Carlo simulation study[J]. Applied Physics Letters, 2014, 105: 223507. doi: 10.1063/1.4903345
    [18] Jung J Y, Yoon D K, Barraclough B, et al. Comparison between proton boron fusion therapy (PBFT) and boron neutron capture therapy (BNCT): a Monte Carlo study[J]. Oncotarget, 2017, 8(24): 39774-39781. doi: 10.18632/oncotarget.15700
    [19] Jung J Y, Yoon D K, Lee H C, et al. The investigation of physical conditions of boron uptake region in proton boron fusion therapy (PBFT)[J]. AIP Advances, 2016, 6: 095119. doi: 10.1063/1.4963741
    [20] Meyer H J, Titt U, Mohan R. Technical note: Monte Carlo study of the mechanism of proton-boron fusion therapy[J]. Medical Physics, 2022, 49(1): 579-582. doi: 10.1002/mp.15381
    [21] Martinez-Val J M, Eliezer S, Piera M, et al. Fusion burning waves in proton-boron-11 plasmas[J]. Physics Letters A, 1996, 216(1/5): 142-152.
    [22] Labaune C, Baccou C, Depierreux S, et al. Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma[J]. Nature Communications, 2013, 4: 2506. doi: 10.1038/ncomms3506
    [23] Sikora M H, Weller H R. A new evaluation of the 11B(p, α) αα reaction rates[J]. Journal of Fusion Energy, 2016, 35(3): 538-543. doi: 10.1007/s10894-016-0069-y
    [24] Moreau D C. Potentiality of the proton-boron fuel for controlled thermonuclear fusion[J]. Nuclear Fusion, 1977, 17(1): 13-20. doi: 10.1088/0029-5515/17/1/002
    [25] Wang L, Chui C S, Lovelock M. A patient-specific Monte Carlo dose-calculation method for photon beams[J]. Medical Physics, 1998, 25(6): 867-878. doi: 10.1118/1.598262
    [26] Ottosson W, Sibolt P, Larsen C, et al. Monte Carlo calculations support organ sparing in Deep-Inspiration Breath-Hold intensity-modulated radiotherapy for locally advanced lung cancer[J]. Radiotherapy and Oncology, 2015, 117(1): 55-63. doi: 10.1016/j.radonc.2015.08.032
    [27] Jarlskog C Z, Paganetti H. Physics settings for using the Geant4 toolkit in proton therapy[J]. IEEE Transactions on Nuclear Science, 2008, 55(3): 1018-1025. doi: 10.1109/TNS.2008.922816
    [28] Folger G, Ivanchenko V N, Wellisch J P. The binary cascade: nucleon nuclear reactions[J]. The European Physical Journal A - Hadrons and Nuclei, 2004, 21(3): 407-417.
    [29] Serber R. Nuclear reactions at high energies[J]. Physical Review, 1947, 72(11): 1114-1115. doi: 10.1103/PhysRev.72.1114
    [30] Tran N H, Shtam T, Marchenko Y Y, et al. Current state and prospectives for proton boron capture therapy[J]. Biomedicines, 2023, 11: 1727. doi: 10.3390/biomedicines11061727
    [31] Tabbakh F, Hosmane N S. Enhancement of radiation effectiveness in proton therapy: comparison between fusion and fission methods and further approaches[J]. Scientific Reports, 2020, 10: 5466. doi: 10.1038/s41598-020-62268-5
    [32] Liu Dong, Lee S L, Woo J K. Evaluation of proton-boron fusion-enhanced proton therapy (PBFEPT) by using a simulation method[J]. New Physics:Sae Mulli, 2019, 69(2): 215-220. doi: 10.3938/NPSM.69.215
    [33] Enger S A, Giusti V, Arce P. SU-E-T-492: high precision cross sections and physics models for proton interactions below 20 MeV in Geant4[J]. Medical Physics, 2013, 40(6): 319.
    [34] Lu Yu, Xu Zhao, Zhang Lianxin, et al. GEANT4 simulations of the neutron beam characteristics for 9Be/7Li targets bombarded by the low energy protons[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2021, 506: 8-14.
    [35] Mazzone A, Finocchiaro P, Lo Meo S, et al. On the (un)effectiveness of proton boron capture in proton therapy[J]. The European Physical Journal Plus, 2019, 134: 361. doi: 10.1140/epjp/i2019-12725-8
  • 加载中
计量
  • 文章访问数:  43
  • HTML全文浏览量:  17
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-15
  • 修回日期:  2024-03-26
  • 录用日期:  2024-03-24
  • 网络出版日期:  2024-03-29

目录

    /

    返回文章
    返回