留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于外差干涉的涡旋光水下传输相位测量

罗鑫 陈强珅 袁晨源 朱启华 张航 冯国英

罗鑫, 陈强珅, 袁晨源, 等. 基于外差干涉的涡旋光水下传输相位测量[J]. 强激光与粒子束, 2024, 36: 061003. doi: 10.11884/HPLPB202436.240027
引用本文: 罗鑫, 陈强珅, 袁晨源, 等. 基于外差干涉的涡旋光水下传输相位测量[J]. 强激光与粒子束, 2024, 36: 061003. doi: 10.11884/HPLPB202436.240027
Luo Xin, Chen Qiangshen, Yuan Chenyuan, et al. Phase measurement of vortex beam after underwater transmission based on heterodyne interference[J]. High Power Laser and Particle Beams, 2024, 36: 061003. doi: 10.11884/HPLPB202436.240027
Citation: Luo Xin, Chen Qiangshen, Yuan Chenyuan, et al. Phase measurement of vortex beam after underwater transmission based on heterodyne interference[J]. High Power Laser and Particle Beams, 2024, 36: 061003. doi: 10.11884/HPLPB202436.240027

基于外差干涉的涡旋光水下传输相位测量

doi: 10.11884/HPLPB202436.240027
基金项目: 国家重点研发计划项目(2022YFB3606304);国家自然科学基金项目(U2230129)
详细信息
    作者简介:

    罗 鑫,2021222050028@stu.scu.edu.cn

    通讯作者:

    冯国英,guoing_feng@scu.edu.cn

  • 中图分类号: TB87.1

Phase measurement of vortex beam after underwater transmission based on heterodyne interference

  • 摘要: 涡旋光束在湍流介质中传输时,光束相位会受到湍流运动的影响产生畸变。采用了一种基于外差干涉的点像元相位提取方法,通过采集各个点在一个周期内的干涉条纹获得的相对相位,重构出涡旋光束经过水下湍流传输后的相位分布。通过功率谱反演法生成随机相位屏,完成不同湍流强度下涡旋光束的传输仿真,结果表明光束相位畸变随着湍流强度的增大而增加。搭建了实验装置,实现了水下环境的涡旋光传输及相位测量。实验结果表明,当涡旋光在存在湍流的水下传输时,其复振幅分布经历了较为复杂的传输过程,强度分布及相位均存在畸变,所采用的方法能精确测量出涡旋光的复杂相位分布,有效完成涡旋光的拓扑荷数识别。
  • 图  1  基于机械移频外差干涉的相位测量示意图

    Figure  1.  Schematic diagram of phase measurement based on mechanical frequency-shift heterodyne interferometry

    图  2  传输模型及仿真结果

    Figure  2.  Propagation model and simulated results

    图  3  方法原理、干涉条纹、包裹相位及重建结果

    Figure  3.  Methods principle, interference fringes, wrapping phase and reconstruction result

    图  4  两种方法相位测量结果

    Figure  4.  Phase measurement of vortex beams by two methods

    图  5  涡旋光相位测量结果及OAM展开谱

    Figure  5.  Phase measurement and spread spectra of vortex beams

  • [1] Guo Jinmiao, Zheng Shijie, Zhou Kainan, et al. Measurement of real phase distribution of a vortex beam propagating in free space based on an improved heterodyne interferometer[J]. Applied Physics Letters, 2021, 119: 023504. doi: 10.1063/5.0054755
    [2] Hu Juntao, Lan Yanping, Fan Haihao, et al. Generation and manipulation of multi-twisted beams via azimuthal shift factors[J]. Applied Physics Letters, 2022, 121: 221103. doi: 10.1063/5.0123142
    [3] Yang Yongzheng, Wu You, Zheng Xxinqing, et al. Particle manipulation with twisted circle Pearcey vortex beams[J]. Optics Letters, 2023, 48(13): 3535-3538. doi: 10.1364/OL.494791
    [4] Tian Yuhan, Wang Lulu, Duan Gaoyan, et al. Multi-trap optical tweezers based on composite vortex beams[J]. Optics Communications, 2021, 485: 126712. doi: 10.1016/j.optcom.2020.126712
    [5] 李懋, 高文禹, 马鑫, 等. 涡旋光束对酵母菌细胞光操纵特性研究[J]. 激光杂志, 2019, 40(12):35-38

    Li Mao, Gao Wenyu, Ma Xin, et al. Study on optical manipulation of yeast cells by vortex beam[J]. Laser Journal, 2019, 40(12): 35-38
    [6] Wu Ziheng, Zhao Jiang, Dou Jiantai, et al. Optical trapping of multiple particles based on a rotationally-symmetric power-exponent-phase vortex beam[J]. Optics Express, 2022, 30(24): 42892-42901. doi: 10.1364/OE.476031
    [7] Yin Xiaojin, Hao Pengqi, Zhang Yupei, et al. Propagation of noninteger cylindrical vector vortex beams in a gradient-index fiber[J]. Optics Letters, 2023, 48(9): 2484-2487. doi: 10.1364/OL.489429
    [8] Chib S, Khannous F, Belafhal A. Propagation of General Model vortex higher-order cosh-Gaussian beam in maritime turbulence[J]. Optical and Quantum Electronics, 2023, 55: 971. doi: 10.1007/s11082-023-05239-0
    [9] Zhai Shuang, Zhu Yun, Zhang Yixin, et al. Effects of oceanic turbulence on orbital angular momenta of optical communications[J]. Journal of Marine Science and Engineering, 2020, 8: 869. doi: 10.3390/jmse8110869
    [10] Dai Chuansheng, Zhang Yimin, Tao Runxia, et al. The nonlinear propagation of cylindrical vector beams in an optical fiber[J]. Optics & Laser Technology, 2020, 130: 106336.
    [11] Shen Yijie, Wang Xuejiao, Xie Zhenwei, et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities [J]. Light: Science & Applications, 2019, 8: 90.
    [12] Kozawa Y, Matsunaga D, Sato S. Superresolution imaging via superoscillation focusing of a radially polarized beam[J]. Optica, 2018, 5(2): 86-92. doi: 10.1364/OPTICA.5.000086
    [13] Zhu Xiangyang, Qiu Song, Liu Tong, et al. Rotating axis measurement based on rotational Doppler effect of spliced superposed optical vortex[J]. Nanophotonics, 2023, 12(12): 2157-2169. doi: 10.1515/nanoph-2023-0090
    [14] Wang Haiping, Tang Liqin, Ma Jina, et al. Optical clearing and shielding with fan-shaped vortex beams[J]. APL Photonics, 2020, 5: 016102. doi: 10.1063/1.5133100
    [15] Bulygin A D, Geints Y E, Geints I Y. Vortex beam in a turbulent Kerr medium for atmospheric communication[J]. Photonics, 2023, 10: 856. doi: 10.3390/photonics10070856
    [16] Villalba N, Melo C, Ayala S, et al. Transmission of optical communication signals through ring core fiber using perfect vortex beams[J]. Optics Express, 2023, 31(24): 40113-40123. doi: 10.1364/OE.503740
    [17] Hu Xiansheng, Gezhi Zhaxibamao, Sasaki O, et al. Topological charge measurement of vortex beams by phase-shifting digital hologram technology[J]. Applied Optics, 2018, 57(35): 10300-10304. doi: 10.1364/AO.57.010300
    [18] Ding Xi, Feng Guoying, Zhou Shouhuan. Detection of phase distribution of vortex beams based on low frequency heterodyne interferometry with a common commercial CCD camera[J]. Applied Physics Letters, 2020, 11: 031106.
    [19] 潘孙翔, 赵生妹, 王乐, 等. 水下轨道角动量态传输特性的实验研究[J]. 光学学报, 2018, 38:0606004 doi: 10.3788/AOS201838.0606004

    Pan Sunxiang, Zhao Shengmei, Wang Le, et al. Experimental investigation of underwater propagation characteristics of orbital angular momentum[J]. Acta Optica Sinica, 2018, 38: 0606004 doi: 10.3788/AOS201838.0606004
    [20] Zhao Shengmei, Zhang Wenhao, Wang Le, et al. Propagation and self-healing properties of Bessel-Gaussian beam carrying orbital angular momentum in an underwater environment[J]. Scientific Reports, 2019, 9: 2025. doi: 10.1038/s41598-018-38409-2
    [21] Avramov-Zamurovic S, Nelson C, Esposito J M. Experimentally evaluating beam scintillation and vortex structure as a function of topological charge in underwater optical turbulence[J]. Optics Communications, 2022, 513: 128079. doi: 10.1016/j.optcom.2022.128079
    [22] Pan Yuqi, Zhao Minglin, Zhang Mingming, et al. Propagation properties of rotationally-symmetric power-exponent-phase vortex beam through oceanic turbulence[J]. Optics & Laser Technology, 2023, 159: 109024.
    [23] 王明军, 余文辉, 黄朝军. 水下拉盖尔-高斯涡旋光束及其叠加态传输特性[J]. 光学学报, 2023, 43:0626001 doi: 10.3788/AOS220992

    Wang Mingjun, Yu Wenhui, Huang Chaojun. Transmission characteristics of underwater Laguerre-Gaussian vortex beam and its superposition states[J]. Acta Optica Sinica, 2023, 43: 0626001 doi: 10.3788/AOS220992
    [24] Falits A V, Kuskov V V, Banakh V A. Propagation of vortex optical beams through artificial convective turbulence[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2023, 302: 108568. doi: 10.1016/j.jqsrt.2023.108568
    [25] Wu Ran, Chen Jun, Zhang Yingying, et al. Revealing the orbital angular momentum spectrum and correlation phase of optical vortices with wander perturbations and spiral offsets[J]. Journal of Lightwave Technology, 2022, 40(7): 2008-2014. doi: 10.1109/JLT.2021.3133842
    [26] Zhang Hui, Ding Wenqiang, Fu Peng, et al. Reducing orbital angular momentum crosstalk of the Bessel–Gaussian beam for underwater optical communications[J]. Journal of Optics, 2020, 22: 065702. doi: 10.1088/2040-8986/ab8ea1
  • 加载中
图(5)
计量
  • 文章访问数:  165
  • HTML全文浏览量:  55
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-20
  • 修回日期:  2024-05-08
  • 录用日期:  2024-05-08
  • 网络出版日期:  2024-05-11
  • 刊出日期:  2024-05-11

目录

    /

    返回文章
    返回