留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高空电磁脉冲晚期环境下电力系统效应研究进展

刘彤宇 李丽 王亚楠 田逸涵 赵禹洋 王奕欢 何雨桁 孟维 蔡玲珑 马志钦 李兴文 丁卫东

刘彤宇, 李丽, 王亚楠, 等. 高空电磁脉冲晚期环境下电力系统效应研究进展[J]. 强激光与粒子束, 2024, 36: 055020. doi: 10.11884/HPLPB202436.240042
引用本文: 刘彤宇, 李丽, 王亚楠, 等. 高空电磁脉冲晚期环境下电力系统效应研究进展[J]. 强激光与粒子束, 2024, 36: 055020. doi: 10.11884/HPLPB202436.240042
Liu Tongyu, Li Li, Wang Ya’nan, et al. Research progress on power system effects in late-time high-altitude electromagnetic pulses environment[J]. High Power Laser and Particle Beams, 2024, 36: 055020. doi: 10.11884/HPLPB202436.240042
Citation: Liu Tongyu, Li Li, Wang Ya’nan, et al. Research progress on power system effects in late-time high-altitude electromagnetic pulses environment[J]. High Power Laser and Particle Beams, 2024, 36: 055020. doi: 10.11884/HPLPB202436.240042

高空电磁脉冲晚期环境下电力系统效应研究进展

doi: 10.11884/HPLPB202436.240042
基金项目: 南方电网公司科技项目(GDKJXM20231021)
详细信息
    作者简介:

    刘彤宇,1410126193@qq.com

    通讯作者:

    王亚楠,yn.wang_ee@xjtu.edu.cn

  • 中图分类号: TM15

Research progress on power system effects in late-time high-altitude electromagnetic pulses environment

  • 摘要: 高空电磁脉冲作为一种广域电磁攻击手段,能对电力设备造成较大冲击,甚至造成电力基础设施瘫痪,严重威胁新型电力系统安全。主要聚焦国内外高空电磁脉冲晚期环境下电力系统效应研究进展。首先,分析了高空电磁脉冲晚期环境下地磁扰动产生机理及感应地电场计算方法,建立了极端地磁感应电流的计算模型。其次,归纳了极端地磁感应电流注入情况下电力变压器、互感器、断路器等典型易损设备效应特征与机理。进一步地,分析了高空电磁脉冲晚期环境极下端地磁感应电流模拟注入装置和效应试验方法,总结了美国国防威胁降低局、美国电力研究院项目等相关试验和电力系统效应仿真与评估研究。最后,从高空电磁脉冲晚期环境效应机理、典型设备效应特征、模拟效应试验和系统级效应评估等层面总结了现有研究结论,梳理了下一步发展方向。
  • 图  1  HEMP E3A和E3B的示意图

    Figure  1.  The schematic diagram of the HEMP E3A and E3B

    图  2  HEMP E3危害电力系统路径与机理示意图

    Figure  2.  Schematic diagram of the coupling path of E3 to power grid

    图  3  IEC标准给出的E3波形

    Figure  3.  E3 waveform given by the IEC standard

    图  4  用于磁化率测试的E3A和E3B基准波形

    Figure  4.  E3A and E3B benchmark waveform to be used for susceptibility testing

    图  5  采用一维地电导率模型计算的电场分布情况

    Figure  5.  Calculation of electric field distribution using a 1D conductivity model

    图  6  HEMP E3环境下的地磁感应地电场及电网GIC的计算流程

    Figure  6.  Calculation process of geomagnetically induced ground electric field under HEMP E3 conditions

    图  7  E3对电力系统威胁故障链示意图

    Figure  7.  Failure chain sketch of E3 on power system

    图  8  输出电流波形-励磁特性曲线图

    Figure  8.  Output current waveform-excitation characteristic curve diagram

    图  9  不同GIC下断路器恢复电压峰值与系统相位的关系

    Figure  9.  Peak breaker recovery voltage as a function of system phase angles for various GICs

    图  10  变压器直流偏磁实验室测试系统

    Figure  10.  Transformer DC Bias Laboratory Testing System

    图  11  中性点串联脉冲注入源的三相系统E3环境试验装置

    Figure  11.  Simulation of a threephase line with pulser in the transformer neutral conductor

    图  12  中性点串联脉冲注入源的三相系统E3环境试验装置

    Figure  12.  Simulation of a three-phase line with pulser along the line

    图  13  橡树岭实验室E3效应模拟注入电流源

    Figure  13.  Oak Ridge Laboratory E3 Effect Simulation Injection Current Source

    图  14  DTRA MHD-E3项目试验现场图片

    Figure  14.  DTRA MHD-E3 project test site images

    图  15  输电级线路E3效应试验线路结构

    Figure  15.  Effect test line structure for transmission level lines

    图  16  DTRA试验中谐波幅值与模拟注入地磁感应电流关系

    Figure  16.  Relationship between harmonic amplitude and simulated injected geomagnetic induction current in DTRA experiments

    图  17  PowerWorld多母线系统仿真模型

    Figure  17.  Multi-Bus GIC Example based on PowerWorld model

    图  18  不同电场上升速率和不同电场电压下负载母线电压的变化

    Figure  18.  Variation in Load Bus Voltage for Various Electric Field Ramp Rates and Various Electric Field Voltage

    图  19  多等级42节点母线系统仿真模型示意图

    Figure  19.  Shematic of 42 bus test case

    图  20  我国西北某750 kV电网示意图

    Figure  20.  Schematic diagram of a 750 kV power grid in northwest China

    表  1  不同柱式结构的k1

    Table  1.   The value of k1 for different designs

    iron core design structure k1
    single phase 1.18
    three-phase, shell form 0.33
    three-phase, 3-legged, core form 0.29
    three-phase, 5-legged, core form 0.66
    下载: 导出CSV
  • [1] 邱爱慈, 蔡汉生, 李俊娜. 新型电力系统要“不惧”强电磁脉冲威胁(数字电网)[N]. 中国能源报, 2021-08-02(04

    Qiu Aici, Cai Hansheng, Li Junna. New power system should be impervious to strong EMP threat (digital grid)[N]. China Energy News, 2021-08-02(04)
    [2] 国家能源局. 国家能源局关于印发《电力安全生产“十四五”行动计划》的通知[EB/OL]. (2021-12-08). http://zfxxgk.nea.gov.cn/2021-12/08/c_1310442211.htm.

    National Energy Administration. Notice of the National Energy Administration on the issuance of the “14th five-year plan of action for safe production of electricity”[EB/OL]. (2021-12-08). http://zfxxgk.nea.gov.cn/2021-12/08/c_1310442211.htm.
    [3] Gilbert J, Kappenman J, Radasky W, et al. The late-time (E3) high-altitude electromagnetic pulse (HEMP) and its impact on the U. S. power grid[R]. Goleta: Oak Ridge National Laboratory, 2010.
    [4] Kruse V J, Nickel D J, Taylor E R, et al. Impacts of a nominal nuclear electromagnetic pulse on electric power systems: a probabilistic approach[J]. IEEE Transactions on Power Delivery, 1991, 6(3): 1251-1263. doi: 10.1109/61.85874
    [5] Zheng Kuan, Boteler D, Pirjola R J, et al. Effects of system characteristics on geomagnetically induced currents[J]. IEEE Transactions on Power Delivery, 2014, 29(2): 890-898. doi: 10.1109/TPWRD.2013.2281191
    [6] 周于翔. HEMP晚期效应对牵引供电系统的影响仿真研究[D]. 石家庄: 石家庄铁道大学, 2021

    Zhou Yuxiang. Simulation study on the influence of the late effect of HEMP on the traction power supply system[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2021
    [7] 王建国, 牛胜利, 张殿辉, 等. 高空核爆炸效应参数手册[M]. 北京: 原子能出版社, 2010

    Wang Jianguo, Niu Shengli, Zhang Dianhui, et al. Beijing: Atomic Energy Press, 2010
    [8] Brouillette D. Response to the summmy of conclusions for the December 21, 2020 PSG meeting on benchmarks for electromagnetic pulses (EMP)[R]. Department of Energy, 2021.
    [9] 冯寒亮, 武晓龙, 李勇. 美国国会“电磁脉冲攻击对美国的威胁评估委员会”及其评估报告简析[J]. 装备环境工程, 2020, 17(6):132-137

    Feng Hanliang, Wu Xiaolong, Li Yong. Review of the U. S. congress’ commission to assess the threat to the United States from electromagnetic pulse attack and its reports[J]. Equipment Environmental Engineering, 2020, 17(6): 132-137
    [10] Lee R H W, Shetye K S, Birchfield A B, et al. Using detailed ground modeling to evaluate electric grid impacts of late-time high-altitude electromagnetic pulses (E3 HEMP)[J]. IEEE Transactions on Power Systems, 2019, 34(2): 1549-1557. doi: 10.1109/TPWRS.2018.2878533
    [11] 徐婷. 大地电导率模型对地磁暴引起的地电场的影响分析[D]. 西安: 西安科技大学, 2018

    Xu Ting. Study on the influence of earth conductivity model on geoelectric induced field[D]. Xi’an: Xi’an University of Science and Technology, 2018
    [12] Alves Ribeiro J, Pinheiro F J G, Pais M A. First estimations of geomagnetically induced currents in the south of Portugal[J]. Space Weather, 2021, 19: e2020SW002546. doi: 10.1029/2020SW002546
    [13] Mac Manus D H, Rodger C J, Ingham M, et al. Geomagnetically induced current model in New Zealand across multiple disturbances: validation and extension to non-monitored transformers[J]. Space Weather, 2022, 20: e2021SW002955. doi: 10.1029/2021SW002955
    [14] Juusola L, Vanhamäki H, Viljanen A, et al. Induced currents due to 3D ground conductivity play a major role in the interpretation of geomagnetic variations[J]. Annales Geophysicae, 2020, 38(5): 983-998. doi: 10.5194/angeo-38-983-2020
    [15] 蒯狄正, 万达, 邹云. 直流偏磁对变压器的影响[J]. 中国电力, 2004, 37(8):41-43 doi: 10.3969/j.issn.1004-9649.2004.08.011

    Kuai Dizheng, Wan Da, Zou Yun. Impacts of long-time DC biasing magnetism on transformers[J]. Electric Power, 2004, 37(8): 41-43 doi: 10.3969/j.issn.1004-9649.2004.08.011
    [16] 赵志斌, 柯俊吉, 马丽斌. 高空核电磁脉冲晚期效应对电网稳定性影响的研究[J]. 电气技术, 2015(9):16-19 doi: 10.3969/j.issn.1673-3800.2015.09.004

    Zhao Zhibin, Ke Junji, Ma Libin. Research on impact of late-time HEMP to stability of power grids[J]. Electrical Engineering, 2015(9): 16-19 doi: 10.3969/j.issn.1673-3800.2015.09.004
    [17] 陈宇浩, 谢彦召, 刘民周, 等. 高空电磁脉冲作用下电力系统主要效应模式分析[J]. 强激光与粒子束, 2019, 31:070007 doi: 10.11884/HPLPB201931.190184

    Chen Yuhao, Xie Yanzhao, Liu Minzhou, et al. Analysis of high-altitude electromagnetic effect models on power system[J]. High Power Laser and Particle Beams, 2019, 31: 070007 doi: 10.11884/HPLPB201931.190184
    [18] 张冰. 大型电力变压器的GIC影响效应研究[D]. 北京: 华北电力大学(北京), 2010

    Zhang Bing. Research on effects of geomagnetically induced current on large power transformers[D]. Beijing: North China Electric Power University (Beijing), 2010
    [19] 刘连光, 张冰, 肖湘宁. 地磁感应电流作用下的变压器励磁电流谐波分析[J]. 变压器, 2010, 47(1):43-46,68

    Liu Lianguang, Zhang Bing, Xiao Xiangning. Analysis of transformer exciting current harmonic under geomagnetically induced current[J]. Transformer, 2010, 47(1): 43-46,68
    [20] 李晓东, 宗伟, 刘连光. 变压器GIC谐波效应动模试验[J]. 华东电力, 2014, 42(1):101-105

    Li Xiaodong, Zong Wei, Liu Lianguang. Dynamic simulation of transformer harmonic effect under GIC[J]. East China Electric Power, 2014, 42(1): 101-105
    [21] Hu Yidan, Li Junhao. Analysis of excitation characteristics of transformers with different core shapes under severe DC bias[J]. Energy Reports, 2022, 8(s13): 1176-1183.
    [22] Girgis R S, Vedante K B. Impact of GICs on power transformers: overheating is not the real issue[J]. IEEE Electrification Magazine, 2015, 3(4): 8-12. doi: 10.1109/MELE.2015.2480355
    [23] 刘教民, 朱溪, 刘洪正, 等. 电力变压器的GIC-Q损耗算法的研究综述[J]. 高电压技术, 2018, 44(7):2284-2291

    Liu Jiaomin, Zhu Xi, Liu Hongzheng, et al. Calculation methods for reactive power loss of transformers due to geomagnetically induced current[J]. High Voltage Engineering, 2018, 44(7): 2284-2291
    [24] Berge J, Varma R K, Marti L. Laboratory validation of the relationship between geomagnetically induced current (GIC) and transformer absorbed reactive power[C]//2011 IEEE Electrical Power and Energy Conference. 2011: 491-495.
    [25] Rezaei-Zare A, Marti L, Narang A, et al. Analysis of three-phase transformer response due to GIC using an advanced duality-based model[J]. IEEE Transactions on Power Delivery, 2016, 31(5): 2342-2350. doi: 10.1109/TPWRD.2015.2505499
    [26] Zhang Xiaoyue, Liu Xinghua, Guo Fanghong, et al. Calculation of DC bias reactive power loss of converter transformer via finite element analysis[J]. IEEE Transactions on Power Delivery, 2021, 36(2): 751-759. doi: 10.1109/TPWRD.2020.2991293
    [27] Dong Xuzhu, Liu Yilu, Kappenman J G. Comparative analysis of exciting current harmonics and reactive power consumption from GIC saturated transformers[C]//2001 IEEE Power Engineering Society Winter Meeting. 2001: 318-322.
    [28] 王泽忠, 黄天超. 特高压变压器地磁感应电流和无功功率关系的定量分析[J]. 电工技术学报, 2020, 35(22):4709-4716

    Wang Zezhong, Huang Tianchao. Quantitative analysis of geomagnectically induced current-Q relation of UHV transformer[J]. Transactions of China Electrotechnical Society, 2020, 35(22): 4709-4716
    [29] 杨一帆, 刘民周, 谢彦召, 等. 高空电磁脉冲晚期成分作用下500kV变压器无功损耗仿真研究[J]. 电工技术学报, 2024, 39(1):267-277

    Yang Yifan, Liu Minzhou, Xie Yanzhao, et al. Simulation research on reactive power loss characteristic of 500kV transformer under late-time high-altitude electromagnetic pulses[J]. Transactions of China Electrotechnical Society, 2024, 39(1): 267-277
    [30] Rezaei-Zare A. Reactive power loss versus GIC characteristic of single-phase transformers[J]. IEEE Transactions on Power Delivery, 2015, 30(3): 1639-1640. doi: 10.1109/TPWRD.2015.2394311
    [31] Rezaei-Zare A. Enhanced transformer model for low- and mid-frequency transients—part I: model development[J]. IEEE Transactions on Power Delivery, 2015, 30(1): 307-315. doi: 10.1109/TPWRD.2014.2347930
    [32] Rezaei-Zare A. Enhanced transformer model for low- and mid-frequency transients—part II: validation and simulation results[J]. IEEE Transactions on Power Delivery, 2015, 30(1): 316-325. doi: 10.1109/TPWRD.2014.2347934
    [33] 王泽忠, 谭瑞娟, 刘连光, 等. 特高压变压器直流偏磁计算及无功功率特性分析[J]. 高压电器, 2017, 53(2):101-107

    Wang Zezhong, Tan Ruijuan, Liu Lianguang, et al. DC bias calculation and characteristics analysis of reactive power for the UHV transformer[J]. High Voltage Apparatus, 2017, 53(2): 101-107
    [34] Gong Ruohan, Ruan Jiangjun, Liao Caibo, et al. 3-D coupled electromagnetic-fluid-thermal analysis of 220kV three-phase three-limb transformer under DC bias[C]//2016 IEEE Conference on Electromagnetic Field Computation (CEFC). 2016: 1.
    [35] Yan Xiaoli, Dong Xia, Han Guozheng, et al. Study of transformer loss and temperature rise under DC bias magnetism based on finite element method[C]//2023 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia). 2023: 429-434.
    [36] 王泽忠, 李明洋, 宣梦真, 等. 单相四柱式变压器直流偏磁下的温升试验及仿真分析[J]. 电工技术学报, 2021, 36(5):1006-1013

    Wang Zezhong, Li Mingyang, Xuan Mengzhen, et al. Temperature rise test and simulation of single-phase four-column transformer under DC-bias[J]. Transactions of China Electrotechnical Society, 2021, 36(5): 1006-1013
    [37] Akbari M, Rezaei-Zare A. Thermal analysis of power transformers under geomagnetically induced current[J]. IEEE Transactions on Power Delivery, 2023, 38(6): 4114-4121. doi: 10.1109/TPWRD.2023.3303106
    [38] Vakhnina V V, Shapovalov V A, Kuznetsov V N, et al. The influence of geomagnetic storms on thermal processes in the tank of a power transformer[J]. IEEE Transactions on Power Delivery, 2015, 30(4): 1702-1707. doi: 10.1109/TPWRD.2014.2386276
    [39] 朱涛, 王丰华. 地磁感应电流作用下大型变压器的温升特性计算[J]. 电工技术学报, 2022, 37(8):1915-1925

    Zhu Tao, Wang Fenghua. Calculation of temperature rise of large transformer under geomagnetically induced current[J]. Transactions of China Electrotechnical Society, 2022, 37(8): 1915-1925
    [40] 张书琦, 汪可, 李金忠, 等. 单相单柱旁轭变压器空负载工况下的直流偏磁关键性能测试[J]. 中国电机工程学报, 2019, 39(14):4334-4344

    Zhang Shuqi, Wang Ke, Li Jinzhong, et al. Tests of DC bias key performances of power transformer with single-phase three-limb core under no-load and rated-load conditions[J]. Proceedings of the CSEE, 2019, 39(14): 4334-4344
    [41] Girgis R, Vedante K. Effects of GIC on power transformers and power systems[C]//PES T&D 2012. 2012: 1-8.
    [42] Horton R. Magnetohydrodynamic electromagnetic pulse assessment of the continental U. S. electric grid[R]. Palo Alto: Electric Power Research Institute, 2017.
    [43] 陈佩璐. HVDC/GIC引发的直流偏磁对差动保护的影响研究[D]. 保定: 华北电力大学, 2014

    Chen Peilu. Research on the effects of DC magnetic bias caused by HVDC/GIC on differential protection[D]. Baoding: North China Electric Power University, 2014
    [44] Zheng Tao, Lu Geye, Chen Peilu, et al. Effects of geomagnetically induced currents on the transfer characteristics of current transformers[J]. International Transactions on Electrical Energy Systems, 2017, 27: e2247. doi: 10.1002/etep.2247
    [45] 马书民, 戎子睿, 林湘宁, 等. 直流偏磁影响下继电保护的误拒动机理分析及对策研究[J]. 电力系统保护与控制, 2022, 50(8):86-98

    Ma Shumin, Rong Zirui, Lin Xiangning, et at. Analysis and countermeasures of relay protection false rejection mechanism under the influence of DC bias[J]. Power System Protection and Control, 2022, 50(8): 86-98
    [46] Mohan N, Kappenman J G, Albertson V D. Harmonics and switching transients in the presence of geomagnetically-induced currents[J]. IEEE Transactions on Power Apparatus and Systems, 1981, PAS-100(2): 585-593. doi: 10.1109/TPAS.1981.316915
    [47] Lauby M G, Rollison E. Effects of geomagnetic disturbances on the bulk power system[R]. Atlanta: NERC, 2012.
    [48] Rajput V N, Boteler D H, Rana N, et al. Insight into impact of geomagnetically induced currents on power systems: overview, challenges and mitigation[J]. Electric Power Systems Research, 2021, 192: 106927. doi: 10.1016/j.jpgr.2020.106927
    [49] Mohan N, Albertson V D, Speak T J, et al. Effects of geomagnetically-induced currents on HVDC converter operation[J]. IEEE Transactions on Power Apparatus and Systems, 1982, PAS-101(11): 4413-4418. doi: 10.1109/TPAS.1982.317408
    [50] 黄敏, 郭倩雯, 童重立, 等. 直流偏磁增大换相失败风险的机理分析及仿真[J]. 华中科技大学学报(自然科学版), 2014, 42(9):102-106

    Huang Min, Guo Qianwen, Tong Chongli, et al. Mechanism analysis of DC-bias increasing the risk of commutation failure[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2014, 42(9): 102-106
    [51] 肖楚鹏, 金祖洋, 邱泽晶, 等. 直流偏磁对换相失败的影响机理及定量分析方法[J]. 科学技术与工程, 2016, 16(36):30-35 doi: 10.3969/j.issn.1671-1815.2016.36.006

    Xiao Chupeng, Jin Zuyang, Qiu Zejing, et al. Mechanism and quantitative analysis method for the influence of DC-bias on commutation failure[J]. Science Technology and Engineering, 2016, 16(36): 30-35 doi: 10.3969/j.issn.1671-1815.2016.36.006
    [52] 李新洁, 王冬辉, 刘春明. 地磁暴对电力系统的影响及防治策略[J]. 强激光与粒子束, 2019, 31:070016 doi: 10.11884/HPLPB201931.190116

    Li Xinjie, Wang Donghui, Liu Chunming. Influence of geomagnetic storms on power system and suppressing measures[J]. High Power Laser and Particle Beams, 2019, 31: 070016 doi: 10.11884/HPLPB201931.190116
    [53] Babaeiyazdi I, Rezaei-Zare M, Rezaei-Zare A. Wind farm operating conditions under geomagnetic disturbance[J]. IEEE Transactions on Power Delivery, 2020, 35(3): 1357-1364. doi: 10.1109/TPWRD.2019.2940913
    [54] 王泽忠, 李明洋, 李冰, 等. 单相四柱试验变压器铁心磁化曲线等效与直流偏磁分析[J]. 电工电能新技术, 2020, 39(8):29-39 doi: 10.12067/ATEEE2004039

    Wang Zezhong, Li Mingyang, Li Bing, et al. Equivalent of magnetization curve of single-phase four-column test transformer and analysis of DC bias[J]. Advanced Technology of Electrical Engineering and Energy, 2020, 39(8): 29-39 doi: 10.12067/ATEEE2004039
    [55] 李明洋, 张俊双, 李海明, 等. 500kV单相自耦变压器空载直流偏磁下的损耗和温升试验及分析[J]. 高压电器, 2021, 57(6):132-139

    Li Mingyang, Zhang Junshuang, Li Haiming, et al. Loss and temperature rise test and analysis on 500 kV single-phase auto-transformer under no-load DC bias[J]. High Voltage Apparatus, 2021, 57(6): 132-139
    [56] DT/L 1799-2018, 电力变压器直流偏磁耐受能力试验方法[S]

    DT/L 1799-2018, The method of ability to withstand DC bias test for power transformers[S]
    [57] Barnes P R, Tesche F, Mcconnell B W, et al. MHD-EMP analysis and protection[R]. Alexandria: Defense Nuclear Agency, 1993.
    [58] 李明洋. 特高压变压器直流偏磁下的损耗和温升特性研究[D]. 北京: 华北电力大学(北京), 2021

    Li Mingyang. Research on loss and temperature rise characteristics of UHV transformers under DC bias[D]. Beijing: North China Electric Power University (Beijing), 2021
    [59] 李冰, 王泽忠, 刘海波, 等. 直流偏磁下500kV单相变压器振动噪声的试验研究[J]. 电工技术学报, 2021, 36(13):2801-2811

    Li Bing, Wang Zezhong, Liu Haibo, et al. Experiment on vibro-acoustic characteristic of 500kV single-phase transformer under DC-bias[J]. Transactions of China Electrotechnical Society, 2021, 36(13): 2801-2811
    [60] Lahtinen M, Elovaara J. GIC occurrences and GIC test for 400 kV system transformer[J]. IEEE Transactions On Power Delivery, 2002, 17(2): 555-561. doi: 10.1109/61.997938
    [61] Dethlefsen R. Design concepts for a pulse power test facility to simulate EMP surges. Part II. Slow pulses[R]. San Diego: Maxwell Laboratories, 1985.
    [62] Foster J S Jr, Gjelde E, Graham W R, et al. Report of the commission to assess the threat to the united states from electromagnetic pulse (EMP) attack. Volume 1: executive report[R]. EMP Commission, 2004.
    [63] Foster J S Jr, Gjelde E, Graham W R, et al. Report of the commission to assess the threat to the united states from electromagnetic pulse (EMP) attack: critical national infrastructures[R]. EMP Commission, 2008.
    [64] Report of the commission to assess the threat to the united states from electromagnetic pulse (EMP) attack. Volume I: assessing the threat from electromagnetic pulse (EMP) executive report[R]. EMP Commission, 2017.
    [65] Overbye T J, Shetye K S, Hughes Y Z, et al. Preliminary consideration of voltage stability impacts of geomagnetically induced currents[C]//2013 IEEE Power & Energy Society General Meeting. 2013: 1-5.
    [66] Hutchins T. Modeling, simulation, and mitigation of the impacts of the late time (E3) high-altitude electromagnetic pulse on power systems[D]. Urbana: University of Illinois at Urbana-Champaign, 2016.
    [67] Overbye T J, Wert J, Shetye K S, et al. Delaunay triangulation based wide-area visualization of electric transmission grids[C]//2021 IEEE Kansas Power and Energy Conference (KPEC). 2021: 1-6.
    [68] 别朝红, 林雁翎, 邱爱慈. 弹性电网及其恢复力的基本概念与研究展望[J]. 电力系统自动化, 2015, 39(22):1-9

    Bie Zhaohong, Lin Yanling, Qiu Aici. Concept and research prospects of power system resilience[J]. Automation of Electric Power Systems, 2015, 39(22): 1-9
    [69] 石文辉, 别朝红, 王锡凡. 大型电力系统可靠性评估中的马尔可夫链蒙特卡洛方法[J]. 中国电机工程学报, 2008, 28(4):9-15 doi: 10.3321/j.issn:0258-8013.2008.04.002

    Shi Wenhui, Bie Zhaohong, Wang Xifan. Applications of Markov chain Monte Carlo in large-scale system reliability evaluation[J]. Proceedings of the CSEE, 2008, 28(4): 9-15 doi: 10.3321/j.issn:0258-8013.2008.04.002
    [70] 陈玥, 李力, 孙少华, 等. 弹性电力系统灾害防御及快速恢复智能调度平台设计与实现[J]. 智慧电力, 2023, 51(8):38-45 doi: 10.3969/j.issn.1673-7598.2023.08.006

    Chen Yue, Li Li, Sun Shaohua, et al. Design and implementation of intelligent dispatching platform for disaster prevention and rapid recovery in resilient power system[J]. Smart Power, 2023, 51(8): 38-45 doi: 10.3969/j.issn.1673-7598.2023.08.006
    [71] 李更丰, 孙少华, 别朝红, 等. 面向新型电力系统弹性提升的储能优化配置与灵活调度研究综述[J]. 高电压技术, 2023, 49(10):4084-4095

    Li Gengfeng, Sun Shaohua, Bie Zhaohong, et al. Review on optimal configuration and flexible scheduling research of energy storage for resilience improvement of new power system[J]. High Voltage Engineering, 2023, 49(10): 4084-4095
    [72] 李明昊, 杨祺铭, 李更丰, 等. 台风场景下基于多种分布式资源协同的弹性配电网两阶段供电恢复策略[J]. 高电压技术, 2024, 50(1):93-104

    Li Minghao, Yang Qiming, Li Gengfeng, et al. Two-stage power supply restoration strategy of resilient distribution network based on coordination of multiple distributed resources in typhoon scenario[J]. High Voltage Engineering, 2024, 50(1): 93-104
  • 加载中
图(20) / 表(1)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  15
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-30
  • 修回日期:  2024-03-29
  • 录用日期:  2024-03-29
  • 网络出版日期:  2024-04-17
  • 刊出日期:  2024-04-28

目录

    /

    返回文章
    返回