留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

同步加速器脉冲励磁电流质量量化方法

梁毅庆 原有进 王晓俊 申国栋 黄玉珍 李继强 张华剑 高大庆 张翔 杨静

梁毅庆, 原有进, 王晓俊, 等. 同步加速器脉冲励磁电流质量量化方法[J]. 强激光与粒子束, 2024, 36: 124001. doi: 10.11884/HPLPB202436.240044
引用本文: 梁毅庆, 原有进, 王晓俊, 等. 同步加速器脉冲励磁电流质量量化方法[J]. 强激光与粒子束, 2024, 36: 124001. doi: 10.11884/HPLPB202436.240044
Liang Yiqing, Yuan Youjin, Wang Xiaojun, et al. Quality quantification in pulsed power supply for synchrotron magnet[J]. High Power Laser and Particle Beams, 2024, 36: 124001. doi: 10.11884/HPLPB202436.240044
Citation: Liang Yiqing, Yuan Youjin, Wang Xiaojun, et al. Quality quantification in pulsed power supply for synchrotron magnet[J]. High Power Laser and Particle Beams, 2024, 36: 124001. doi: 10.11884/HPLPB202436.240044

同步加速器脉冲励磁电流质量量化方法

doi: 10.11884/HPLPB202436.240044
基金项目: 国家重点研发计划项目(2019YFA0405402)
详细信息
    作者简介:

    梁毅庆,liangyiqing@hqu.edu.cn

    通讯作者:

    王晓俊,wangxj@impcas.ac.cn

  • 中图分类号: TL503.5

Quality quantification in pulsed power supply for synchrotron magnet

  • 摘要: 同步加速器中,磁铁励磁电流高频的纹波误差能够引起磁场纹波,进而导致束流接受度降低。励磁电流低频的跟踪误差会影响磁场与束流能量的匹配程度,同时会引起束流闭合轨道畸变。为了从以上两方面评估励磁电流误差对于束流的影响,研究了HIAF BRing二极磁铁磁场纹波与励磁电流纹波之间的关系,并提出了一套基于高低频分离的脉冲励磁电流质量量化方法。该方法利用高斯平滑处理得到励磁电流低频的跟踪误差分量和高频的纹波误差分量,采用三倍标准差作为励磁电流跟踪性能及纹波质量的量化指标。方法中低通滤波器参数由磁铁磁场纹波与励磁电流纹波的响应关系确定,该方法同时准确地量化评估了磁场纹波质量。此外,由该方法得到的电流跟踪误差波形能够应用于同步加速器励磁电源的给定修正,进而提高磁场与束流能量匹配程度。
  • 图  1  BRing二极铁电源样机典型工作波形、电流输出、电流误差、跟踪误差

    Figure  1.  Typical operating waveform, output current, current error and tracking error of the BRing dipole-magnet power supply prototype

    图  2  电流纹波与跟踪质量以及磁场纹波质量量化方法流程图

    Figure  2.  Flow chart of ripple and tracking quantification method for the current and ripple quantification method for the magnetic field

    图  3  恒流励磁实验与脉冲励磁实验平台示意图

    Figure  3.  Schematic diagram of constant current excitation and pulse current excitation experiment platform

    图  4  归一化磁场慢漂消除,1.6 kHz滤波前后归一化磁场与电流纹波及纹波直方图变化(E13运行模式)

    Figure  4.  Low-frequency drift elimination of normalized magnetic field, and variation of ripple and histograms of normalized magnetic field and excitation current before and after filtering with cut-off frequency of 1.6 kHz

    图  5  五种工作模式下磁场纹波和励磁电流纹波量化指标重复测试结果 (1.6 kHz截止频率低通滤波)

    Figure  5.  Repeated testing result of quantification indicators of magnetic field and excitation current ripple under 5 operation mode (low pass filtering with cut-off frequency of 1.6 kHz)

    图  6  不同PI参数下电流给定波形、电流误差波形及电流跟踪误差波形

    Figure  6.  Current reference waveforms, current error waveforms, and current tracking error waveforms under different PI regulator parameters

    图  7  不同PI参数下输出电流波形、电流纹波误差波形

    Figure  7.  Output current waveforms, current ripple error waveforms under different PI regulator parameters

    图  8  不同PI参数下的电流纹波误差及电流跟踪误差三倍标准差指标

    Figure  8.  Three times the standard deviation of current ripple error and tracking error under different PI regulator parameters

    表  1  BRing二极铁电源样机设计参数

    Table  1.   Design parameters of BRing dipole-magnet power supply prototype

    maximum current $ {I}_{\mathrm{m}\mathrm{a}\mathrm{x}} $/Amaximum current rise rate $ {\dot{I}}_{\mathrm{m}\mathrm{a}\mathrm{x}} $/(A/s)load inductance $ {L}_{\mathrm{M}} $/mHload resistor $ {R}_{\mathrm{M}} $/mΩ
    39003800011636.4
    下载: 导出CSV

    表  2  磁场与励磁电流质量测量实验参数

    Table  2.   Test parameters of magnetic field and excitation current quality measurement

    test parameter constant current excitation tests pulse excitation tests
    excitation current amplitude 400 A 3900 A
    rated magnetic field of dipole-magnet
    deflection radius of dipole-magnet
    deviation angle of dipole-magnet
    1.58 T
    21.5 m
    7.5°
    1.58 T
    21.5 m
    7.5°
    deflection angle of the magnetic coil 10.14° /
    effective area of the magnetic coil ($ {s}_{\mathrm{c}} $) 0.017 m2 /
    number of turns of the magnetic coil ($ {n}_{\mathrm{c}} $) 20 turns /
    sampling rate of ADC 200 kHz 100 kHz
    bits of ADC 24 bit 18 bit
    voltage range of ADC [−10, 10] V [−10, 10] V
    measuring current range of DCCT [0, 4000] A [0, 6000] A
    current voltage ratio of DCCT 400 A/V 600 A/V
    下载: 导出CSV
  • [1] Yang J C, Xia J W, Xiao G Q, et al. High Intensity heavy ion Accelerator Facility (HIAF) in China[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 317: 263-265. doi: 10.1016/j.nimb.2013.08.046
    [2] Zhou Xiaohong, Yang Jiancheng, The HIAF Project Team. Status of the high-intensity heavy-ion accelerator facility in China[J]. AAPPS Bulletin, 2022, 32: 35. doi: 10.1007/s43673-022-00064-1
    [3] Zhang C. Status of BEPC and plans of BEPCII[C]//Proceedings of the 2nd Asian Particle Accelerator Conference. 2001.
    [4] Chen S Y, Xu H J, Zhao Z T. Shanghai synchrotron radiation facility[C]//Proceedings of the 1999 Particle Accelerator Conference. 1999: 209-211.
    [5] Hahn H, Forsyth E, Foelsche H, et al. The RHIC design overview[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 499(2/3): 245-263.
    [6] Augustin I, on Behalf of the FAIR Project Coordination Group. Status of the FAIR project[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2007, 261(1/2): 1014-1017.
    [7] High-Intensity Proton Accelerator Project Team. Accelerator technical design report for high-intensity proton accelerator facility project, J-PARC[R]. JAERI-Tech-2003-044, 2003.
    [8] Schmidt R. Status of the LHC[C]. IEEE Transactions on Nuclear Science, 2002.
    [9] Bruning O S, Collier P, Lebrun P, et al. LHC design Report[R]. Geneva: CERN, 2004.
    [10] Bordry F. LHC power converters performance requirements[R/OL]. https://cds.cern.ch/record/567166/files/7-5-fb.pdf.
    [11] Gerigk F. Superconducting RF at CERN: operation, projects, and R&D[J]. IEEE Transactions on Applied Superconductivity, 2018, 28: 3500205.
    [12] Liang Yiqing, Wang Xiaojun, Li Jiqiang, et al. IEEE 1588-based timing and triggering prototype for distributed power supplies in HIAF[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 5502309.
    [13] 胡寿松. 自动控制原理[M]. 北京: 科学出版社, 2001

    Hu Shousong. Principle of automatic control[M]. Beijing: Science Press, 2001
    [14] Shen Yi, Tang Xiyuan, Shen Linxiao, et al. A 10-bit 120-ms/s SAR ADC with reference ripple cancellation technique[J]. IEEE Journal of Solid-State Circuits, 2020, 55(3): 680-692. doi: 10.1109/JSSC.2019.2946215
    [15] Thurel Y, Bordy F, Charoy A. EMC concepts applied to the switching mode power converters supplying the superconductive magnets for the CERN LHC accelerator[C]//Proceedings of 2019 International Symposium on Electromagnetic Compatibility. 2019: 796-801.
    [16] Yang Xin, Yuan Ye, Zhang Xueqiang, et al. Shaping high-power IGBT switching transitions by active voltage control for reduced EMI generation[J]. IEEE Transactions on Industry Applications, 2015, 51(2): 1669-1677. doi: 10.1109/TIA.2014.2347578
    [17] Jouyaeian A, Fan Qinwen, Zamparette R, et al. A hybrid magnetic current sensor with a multiplexed ripple-reduction loop[J]. IEEE Journal of Solid-State Circuits, 2023, 58(10): 2874-2882. doi: 10.1109/JSSC.2023.3273389
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  92
  • HTML全文浏览量:  40
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-25
  • 修回日期:  2024-09-22
  • 录用日期:  2024-09-22
  • 网络出版日期:  2024-11-02
  • 刊出日期:  2024-11-08

目录

    /

    返回文章
    返回