留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离子推力器碳基材料栅极研制与应用现状及启示

高斌 李娟 耿海 王彦龙 陈娟娟

高斌, 李娟, 耿海, 等. 离子推力器碳基材料栅极研制与应用现状及启示[J]. 强激光与粒子束, 2024, 36: 089002. doi: 10.11884/HPLPB202436.240067
引用本文: 高斌, 李娟, 耿海, 等. 离子推力器碳基材料栅极研制与应用现状及启示[J]. 强激光与粒子束, 2024, 36: 089002. doi: 10.11884/HPLPB202436.240067
Gao Bin, Li Juan, Geng Hai, et al. Development and application of carbon based material grids for ion thruster: status quo and suggestions[J]. High Power Laser and Particle Beams, 2024, 36: 089002. doi: 10.11884/HPLPB202436.240067
Citation: Gao Bin, Li Juan, Geng Hai, et al. Development and application of carbon based material grids for ion thruster: status quo and suggestions[J]. High Power Laser and Particle Beams, 2024, 36: 089002. doi: 10.11884/HPLPB202436.240067

离子推力器碳基材料栅极研制与应用现状及启示

doi: 10.11884/HPLPB202436.240067
基金项目: 国家重点研发计划项目(2022YFB3403500)
详细信息
    作者简介:

    高 斌,gaobin2021429@163.com

  • 中图分类号: V493.4

Development and application of carbon based material grids for ion thruster: status quo and suggestions

  • 摘要: 离子推力器是广泛应用于空间航天任务的电推力器之一,栅极在离子推力器中承担着引出离子并加速进而实现推力的作用,直接影响推力器性能及寿命。相比于传统钼栅,碳基栅极具有热膨胀系数低、耐离子溅射高等优势,是未来高比冲、大推力、长寿命离子推力器栅极的理想候选材料,已被国外部分先进离子推力器成功在轨应用。分析对比了不同栅极材料特性,调研总结了国内外碳基栅极研制过程及技术特点,并报道了作者近期在小口径不同构型C/C栅极与一体化C/C栅极研制方面的相关进展,最后针对我国离子电推进发展趋势,提出了后续碳基栅极研究的经验启示与建议。
  • 图  1  不同氙离子能量对C/C和PG材料的溅射产额

    Figure  1.  Sputtering yield of C/C and PG materials with different xenon ion energies

    图  2  8 cm C/C栅极组件

    Figure  2.  8 cm C/C grid assembly

    图  3  改进型30 cm C/C栅极组件

    Figure  3.  Improved 30 cm C/C grid assembly

    图  4  30 cm PG栅极组件

    Figure  4.  30 cm PG grid assembly

    图  5  矩形PG栅极组件

    Figure  5.  Rectangular PG grid assembly

    图  6  C/C复合栅极组件

    Figure  6.  C/C composite grid assemblies

    图  7  IT-200改进型栅极组件

    Figure  7.  IT-200 improved grid assembly

    图  8  栅面局部特写

    Figure  8.  Partial close-up of grid

    图  9  改进型22 cm PG栅极组件

    Figure  9.  Improved 22 cm PG grid assembly

    图  10  机械成孔栅极样板

    Figure  10.  Mechanical drilling grid template

    图  11  栅极孔筋纤维织带破裂

    Figure  11.  Grid hole reinforcement fiber ribbon ruptured

    图  12  不同构型C/C复合材料栅极组件

    Figure  12.  Different configurations of C/C composite grid assemblies

    图  13  凸面C/C栅极20 mN工况束流状态

    Figure  13.  Beam state of convex grid under 20 mN operating condition

    图  14  等构型C/C复合材料栅极与钼栅极束流参数对比

    Figure  14.  Beam current parameters of equi-configuration C/C composite material grid and molybdenum grid

    图  15  一体化C/C栅极组件

    Figure  15.  Integrated C/C grid assembly

    表  1  栅极工作特性及失效因素

    Table  1.   Grid operating characteristics and failure factors

    work characteristic failure factors failure form
    feather ion sputtering broken reinforcement and pit in the bridge shortened lifespan and decreased beam performance
    high temperature plasma bombardment grid thermal deformation grid ignition short circuit
    vibration shock grid local rupture induced beam failure
    下载: 导出CSV

    表  2  栅极材料主要物理特性参数

    Table  2.   Main physical characteristic parameters of grid material

    grid material elastic modulus/GPa strength/MPa ion sputtering
    rate/eV
    thermal expansion
    coefficient/(10−6 K−1)
    safe electric
    field/(kV/cm)
    molybdenum 324 655 50 4.9 40~50
    PG 32 90 16 0 20~30
    C/C 206 345 14 −1.8~−0.51 23~35
    下载: 导出CSV

    表  3  不同复合栅极成孔技术分析

    Table  3.   Analysis of different composite grid hole forming techniques

    hole making method advantages disadvantages
    machining high efficiency and low cost poor quality and high tool loss
    EDM high precision and smooth hole wall shrinkage effect and high cost
    ultrasonic machining high precision and smooth hole wall shrinkage effect and high cost
    waterjet etching low processing cost poor quality and significant damage
    laser processing high quality and low damage high cost
    下载: 导出CSV
  • [1] 耿海, 李婧, 吴辰宸, 等. 空间电推进技术发展及应用展望[J]. 气体物理, 2023, 8(1):1-16

    Geng Hai, Li Jing, Wu Chenchen, et al. Development and application prospect of space electric propulsion technology[J]. Physics of Gases, 2023, 8(1): 1-16
    [2] 郑茂繁, 江豪成. 离子推进器C/C复合材料栅极研究[J]. 航天器环境工程, 2010, 27(6):756-759 doi: 10.3969/j.issn.1673-1379.2010.06.020

    Zheng Maofan, Jiang Haocheng. C/C composite grid for ion thruster[J]. Spacecraft Environment Engineering, 2010, 27(6): 756-759 doi: 10.3969/j.issn.1673-1379.2010.06.020
    [3] Madeev S, Selivanov M, Shagayda A, et al. Experimental study of ion optics with square apertures for high-power ion thrusters[J]. Review of Scientific Instruments, 2019, 90: 043302. doi: 10.1063/1.5090590
    [4] Jovel D R, Walker M L R, Herman D. Review of high-power electrostatic and electrothermal electric propulsion[J]. Journal of Propulsion and Power, 2022, 38(6): 1051-1081. doi: 10.2514/1.B38594
    [5] 张天平, 耿海, 张雪儿, 等. 离子电推进技术的发展现状与未来[J]. 上海航天, 2019, 36(6):88-96

    Zhang Tianping, Geng Hai, Zhang Xueer, et al. Current Status and future development of ion electric propulsion[J]. Aerospace Shanghai, 2019, 36(6): 88-96
    [6] 陈娟娟, 张天平, 贾艳辉, 等. 20 cm氙离子推力器放电室性能优化[J]. 强激光与粒子束, 2012, 24(10):2469-2473 doi: 10.3788/HPLPB20122410.2469

    Chen Juanjuan, Zhang Tianping, Jia Yanhui, et al. Performance optimization of 20 cm xenon ion thruster discharge chamber[J]. High Power Laser and Particle Beams, 2012, 24(10): 2469-2473 doi: 10.3788/HPLPB20122410.2469
    [7] 贾艳辉, 王聪, 李娟, 等. 三栅极离子推力器电子反流失效影响参数的敏感性研究[J]. 推进技术, 2020, 41(1):140-148

    Jia Yanhui, Wang Cong, Li Juan, et al. Parameter sensitivity analysis of electron backstreaming failure mode for 3-grid system ion thruster[J]. Journal of Propulsion Technology, 2020, 41(1): 140-148
    [8] 孙明明, 耿海, 杨俊泰, 等. 离子推力器束流引出状态对栅极刻蚀的影响[J]. 强激光与粒子束, 2021, 33:024005 doi: 10.11884/HPLPB202133.200229

    Sun Mingming, Geng Hai, Yang Juntai, et al. Influence of ion beam perveance condition on grids erosion for ion thruster[J]. High Power Laser and Particle Beams, 2021, 33: 024005 doi: 10.11884/HPLPB202133.200229
    [9] Garner C E, Brophy J R. Fabrication and testing of carbon-carbon grids for ion optics[C]//Proceedings of the 28th Joint Propulsion Conference and Exhibit. 1992: 3149.
    [10] Meserole J S. Measurement of relative erosion rates of carbon-carbon and molybdenum optics[C]//Proceedings of the 30th Joint Propulsion Conference and Exhibit. 1994: 3119.
    [11] De Pano M K, Hart S L, Hanna A A, et al. Fabrication and vibration results of 30-cm pyrolytic graphite ion optics[C]//Proceedings of the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 2004: 3615.
    [12] Goebel D M, Katz I. Fundamentals of electric propulsion: ion and Hall thrusters[M]. Hoboken: Wiley, 2008.
    [13] Mueller J, Brophy J R, Brown D K. Design, fabrication and testing of 30-cm dia. dished carbon-carbon ion engine grids[C]//Proceedings of the 32nd Joint Propulsion Conference and Exhibit. 1996: 3204.
    [14] Rawal S P, Perry A R, Williams J D, et al. Performance evaluation of 8-cm diameter ion optics assemblies fabricated from carbon-carbon composites[C]//Proceedings of the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 2004: 3614.
    [15] Haag T, Soulas G C. Performance and vibration of 30 cm pyrolytic ion thruster optics[C]//Proceedings of the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 2003: 3178.
    [16] Haag T, Patterson M, Rawlin V, et al. Carbon-based ion optics development at NASA GRC[C]//Proceedings of the 27th International Electric Propulsion Conference. 2002: 1324.
    [17] Foster J E, Haag T, Kamhawi H, et al. The high power electric propulsion (HiPEP) ion thruster[C]//Proceedings of the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 2004: 3812.
    [18] Beatty J S, Snyder J S, Shih W. Manufacturing of 57cm carbon-carbon composite ion optics for 20-kW-class ion engine[C]//Proceedings of the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 2005: 4441.
    [19] Kitamura S, Miyazaki K, Hayakawa Y, et al. Fabrication and testing of carbon-carbon composite grids for a 14 cm ion thruster[J]. IEPC Paper, 1995: 95-93.
    [20] Shirakawa R, Yamashita Y, Koda D, et al. Investigation and experimental simulation of performance deterioration of microwave discharge ion thruster μ10 during space operation[J]. Acta Astronautica, 2020, 174: 367-376. doi: 10.1016/j.actaastro.2020.05.004
    [21] Snyder J, Goebel D M, Hofer R R, et al. Performance evaluation of the T6 ion engine[J]. Journal of Propulsion and Power, 2012, 28(2): 371-379. doi: 10.2514/1.B34173
    [22] 陈玥. 离子推进C/C复合材料栅极的设计与力学分析[D]. 上海: 上海大学, 2017

    Chen Yue. Structural design and mechanical analysis on C/C grids for ion thruster[D]. Shanghai: Shanghai University, 2017
    [23] 郭德洲, 顾左, 郑茂繁, 等. 离子推力器碳基材料栅极研究进展[J]. 真空与低温, 2016, 22(3):125-131 doi: 10.3969/j.issn.1006-7086.2016.03.001

    Guo Dezhou, Gu Zuo, Zheng Maofan, et al. The investigation of carbon-based material grid for ion thruster[J]. Vacuum & Cryogenics, 2016, 22(3): 125-131 doi: 10.3969/j.issn.1006-7086.2016.03.001
    [24] 刘海波, 王晋宇, 韩灵生, 等. 离子推进器碳栅液氮冷却钻孔实验研究[C]//中国航天第三专业信息网第三十八届技术交流会暨第二届空天动力联合会议论文集——电推进技术. 2017: 46-51

    Liu Haibo, Wang Jinyu, Han Lingsheng, et al. Experimental and study on the cooling drilling of carbon and liquid nitrogen in ion thruster[C]//Conference Series on Electric Propulsion Technology. 2017: 46-51
    [25] 魏贺冉, 罗锐祺, 张承双, 等. 基于栅极用碳/碳复合材料铺层角度的优化[J]. 航天制造技术, 2023(2):32-38 doi: 10.3969/j.issn.1674-5108.2023.02.006

    Wei Heran, Luo Ruiqi, Zhang Chengshuang, et al. Optimization of lamination angle based on carbon/carbon composite for grid[J]. Aerospace Manufacturing Technology, 2023(2): 32-38 doi: 10.3969/j.issn.1674-5108.2023.02.006
    [26] Funaki I, Kuninaka H, Toki K, et al. Verification tests of carbon-carbon composite grids for microwave discharge ion thruster[J]. Journal of Propulsion and Power, 2002, 18(1): 169-175. doi: 10.2514/2.5913
    [27] Kitamura S, Hayakawa Y, Kasai Y, et al. Fabrication of carbon-carbon composite ion thruster grids-improvement of structural strength[J]. IEPC Paper, 1997: 93-97.
    [28] Brophy J R, Marcucci M G, Ganapathi G B, et al. The ion propulsion system for Dawn[C]//Proceedings of the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 2003: 4542.
    [29] Mueller J, Brown D K, Garner C E, et al. Fabrication of Carbon-Carbon grids for ion optics[C]//International Electric Propulsion Conference. 1993: 93-112.
    [30] Hedges D E, Meserole J S. Demonstration and evaluation of carbon-carbon ion optics[J]. Journal of Propulsion and Power, 1994, 10(2): 255-261. doi: 10.2514/3.23737
    [31] 张天平. 兰州空间技术物理研究所电推进新进展[J]. 火箭推进, 2015, 41(2):7-12,32 doi: 10.3969/j.issn.1672-9374.2015.02.002

    Zhang Tianping. New progress of electric propulsion technology in LIP[J]. Journal of Rocket Propulsion, 2015, 41(2): 7-12,32 doi: 10.3969/j.issn.1672-9374.2015.02.002
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  171
  • HTML全文浏览量:  87
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-29
  • 修回日期:  2024-06-13
  • 录用日期:  2024-06-13
  • 网络出版日期:  2024-06-24
  • 刊出日期:  2024-07-04

目录

    /

    返回文章
    返回