留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间整形飞秒激光高效制备纳米光栅

赵昶栋 刘永刚 魏文卿 张航 邓琥 刘泉澄 胡建波 尚丽平 李占锋

赵昶栋, 刘永刚, 魏文卿, 等. 空间整形飞秒激光高效制备纳米光栅[J]. 强激光与粒子束, 2024, 36: 081001. doi: 10.11884/HPLPB202436.240081
引用本文: 赵昶栋, 刘永刚, 魏文卿, 等. 空间整形飞秒激光高效制备纳米光栅[J]. 强激光与粒子束, 2024, 36: 081001. doi: 10.11884/HPLPB202436.240081
Zhao Changdong, Liu Yonggang, Wei Wenqing, et al. Research on efficient fabrication of nanogratings by space shaping femtosecond laser[J]. High Power Laser and Particle Beams, 2024, 36: 081001. doi: 10.11884/HPLPB202436.240081
Citation: Zhao Changdong, Liu Yonggang, Wei Wenqing, et al. Research on efficient fabrication of nanogratings by space shaping femtosecond laser[J]. High Power Laser and Particle Beams, 2024, 36: 081001. doi: 10.11884/HPLPB202436.240081

空间整形飞秒激光高效制备纳米光栅

doi: 10.11884/HPLPB202436.240081
基金项目: 国家自然科学基金项目(11872058); 中物院创新发展基金项目(CX20210025)
详细信息
    作者简介:

    赵昶栋,zhao.changd@foxmail.com

    通讯作者:

    胡建波,jianbo.hu@caep.cn

    李占锋,109181294@qq.com

  • 中图分类号: O436

Research on efficient fabrication of nanogratings by space shaping femtosecond laser

  • 摘要: 针对常规物镜聚焦飞秒激光光斑较小,难以单次直写加工成型大面积纳米光栅结构的问题,提出了利用空间狭缝整形的飞秒激光脉冲直写方法。通过开展单晶硅表面纳米光栅结构对加工系统的参数依赖关系研究,获得入射整形飞秒激光能量密度8.00 μJ/cm2、扫描速度9 mm/s、狭缝宽度0.40 mm的优化条件。采用SEM、AFM等手段对光栅进行微观表征,结果表明,单次扫描所制备的纳米光栅结构具有极高的宽度 (41.20 μm),说明提出的方法可以显著提升 一次成型大面积纳米光栅结构的制备效率。
  • 图  1  空间狭缝整形飞秒激光直写系统实验流程图

    Figure  1.  Experimental flowchart of spatial-shaped femtosecond laser direct writing

    图  2  空间狭缝整形飞秒激光光斑衍射的仿真与实际拍摄结果,比例尺为10 μm

    Figure  2.  Simulation and actual shooting results of femtosecond laser spot diffraction through slit spatial shaping.The scale bar is 10 μm

    图  3  使用CCD拍摄的未整形fs脉冲光斑形貌和0.5 mm狭缝整形fs脉冲光斑形貌及其对应不同能量密度下加工结果。比例尺为5 μm

    Figure  3.  Unshaped fs pulse spot morphology and slit-shaped fs pulse spot morphology captured using CCD and their corresponding processing results at different energy densities. The scale bar is 5 μm

    图  4  设置狭缝宽度为0.50 mm,扫描速度为9 mm/s,单晶硅表面纳米光栅在不同激光脉冲能量密度下的CCD图像。比例尺为10 μm

    Figure  4.  Setting the slit width at 0.50 mm and the scanning speed at 9 mm/s, CCD images of the nanograting structures on the surface of monocrystalline silicon at different laser pulse fluences are obtained. The scale bar is 10 μm

    图  5  激光能量密度为8.50 μJ/cm2,狭缝宽度为0.50 mm,单晶硅表面纳米光栅在不同激光脉冲扫描速度下的CCD图像。比例尺为10 μm

    Figure  5.  Setting the laser energy density at 8.50 μJ/cm2 and the slit width at 0.50 mm, CCD images of the nanograting structures on the surface of monocrystalline silicon at different laser pulse scanning speeds are obtained. The scale bar is 10 μm

    图  6  激光能量密度为8.50 μJ/cm2,扫描速度为9 mm/s,单晶硅表面纳米光栅在不同狭缝宽度下的CCD图像。比例尺为10 μm

    Figure  6.  Setting the laser energy density at 8.50 μJ/cm2 and the scanning speed at 9 mm/s, CCD images of the nanograting structures on the surface of monocrystalline silicon are captured at different slit widths. The scale is 10 μm

    图  7  优化条件下制备的单晶硅表面纳米光栅结构

    Figure  7.  Nanograting structures on the surface of monocrystalline silicon fabricated under optimized conditions

    图  8  不同入射角度下,纳米光栅结构对偏振入射光的衍射调控效果。比例尺为1 cm

    Figure  8.  Incident angle controlled diffraction by surface nanograting structures. The scale bar is 1 cm

  • [1] Xu Xiaoyi, Wang Tianxin, Chen Pengcheng, et al. Femtosecond laser writing of lithium niobate ferroelectric nanodomains[J]. Nature, 2022, 609(7927): 496-501. doi: 10.1038/s41586-022-05042-z
    [2] Pan Changji, Jiang Lan, Sun Jingya, et al. Ultrafast optical response and ablation mechanisms of molybdenum disulfide under intense femtosecond laser irradiation[J]. Light: Science & Applications, 2020, 9: 80.
    [3] Wu Meng, Xu Nianxi, Wang Erxi, et al. Nanogratings fabricated by wet etching assisted femtosecond laser modification of silicon for surface plasmon resonance sensing[J]. Applied Surface Science, 2022, 603: 154446. doi: 10.1016/j.apsusc.2022.154446
    [4] Zhao Quanzhong, Qiu Jianrong, Zhao Chongjun, et al. Formation of arrayed holes on metal foil and metal film by multibeam interfering femtosecond laser beams[J]. Chinese Physics, 2005, 14(6): 1181-1184. doi: 10.1088/1009-1963/14/6/021
    [5] 王锁成, 董世运, 闫世兴, 等. 飞秒激光制备金属表面微纳结构及其技术应用[J]. 激光与光电子学进展, 2023, 60:1700005

    Wang Suocheng, Dong Shiyun, Yan Shixing, et al. Fabrication of micro/nano structures on metal surfaces by femtosecond laser and its technical applications[J]. Laser & Optoelectronics Progress, 2023, 60: 1700005
    [6] Oboňa J V, Skolski J Z P, Römer G R B E, et al. Pulse-analysis-pulse investigation of femtosecond laser-induced periodic surface structures on silicon in air[J]. Optics Express, 2014, 22(8): 9254-9261. doi: 10.1364/OE.22.009254
    [7] 彭滟, 温雅, 张冬生, 等. 飞秒激光功率与脉冲数的比例关系对制备硅表面微结构的影响[J]. 中国激光, 2011, 38:1203005 doi: 10.3788/CJL201138.1203005

    Peng Yan, Wen Ya, Zhang Dongsheng, et al. Effect of the relation between femtosecond laser power and pulse number for fabricating surface-microstructured silicon[J]. Chinese Journal of Lasers, 2011, 38: 1203005 doi: 10.3788/CJL201138.1203005
    [8] Liang Feng, Vallée R, Leang Chin S. Pulse fluence dependent nanograting inscription on the surface of fused silica[J]. Applied Physics Letters, 2012, 100: 251105. doi: 10.1063/1.4729620
    [9] Li Yi, Liu Feng, Li Yanfeng, et al. Experimental study on GaP surface damage threshold induced by a high repetition rate femtosecond laser[J]. Applied Optics, 2011, 50(13): 1958-1962. doi: 10.1364/AO.50.001958
    [10] Shen Mengyan, Carey J E, Crouch C H, et al. High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water[J]. Nano Letters, 2008, 8(7): 2087-2091. doi: 10.1021/nl080291q
    [11] 王磊, 王熠, 王琳, 等. 飞秒激光直写偏振转换器件和几何相位器件(特邀)[J]. 光子学报, 2021, 50(6):38-49 doi: 10.3788/gzxb20215006.0650103

    Wang Lei, Wang Yi, Wang Lin, et al. Femtosecond laser direct writing for polarization convertors and geometric phase elements (Invited)[J]. Atca Photonica Sinica, 2021, 50(6): 38-49 doi: 10.3788/gzxb20215006.0650103
    [12] Ulmeanu M, Jipa F, Radu C, et al. Large scale microstructuring on silicon surface in air and liquid by femtosecond laser pulses[J]. Applied Surface Science, 2012, 258(23): 9314-9317. doi: 10.1016/j.apsusc.2011.08.110
    [13] Deng Guoliang, Feng Guoying, Liu Kui, et al. Temperature dependence of laser-induced micro/nanostructures for femtosecond laser irradiation of silicon[J]. Applied Optics, 2014, 53(14): 3004-3009. doi: 10.1364/AO.53.003004
    [14] Feng Pin, Jiang Lan, Li Xin, et al. Gold-film coating assisted femtosecond laser fabrication of large-area, uniform periodic surface structures[J]. Applied Optics, 2015, 54(6): 1314-1319. doi: 10.1364/AO.54.001314
    [15] 杨成娟, 梅雪松, 王文君, 等. 金铬薄膜的飞秒激光烧蚀加工[J]. 红外与激光工程, 2011, 40(1):61-65 doi: 10.3969/j.issn.1007-2276.2011.01.013

    Yang Chengjuan, Mei Xuesong, Wang Wenjun, et al. Femtosecond laser ablation on gold-chromium film[J]. Infrared and Laser Engineering, 2011, 40(1): 61-65 doi: 10.3969/j.issn.1007-2276.2011.01.013
    [16] Pan An, Si Jinhai, Chen Tao, et al. Fabrication of two-dimensional periodic structures on silicon after scanning irradiation with femtosecond laser multi-beams[J]. Applied Surface Science, 2016, 368: 443-448. doi: 10.1016/j.apsusc.2016.01.269
    [17] 王宇, 夏博, 万露露, 等. 飞秒激光辅助化学刻蚀透明材料微孔加工研究进展[J]. 激光与光电子学进展, 2022, 59:1900009

    Wang Yu, Xia Bo, Wan Lulu, et al. Study on femtosecond laser assisted chemical etching of transparent materials[J]. Laser & Optoelectronics Progress, 2022, 59: 1900009
    [18] 袁春华, 李晓红, 唐多昌, 等. 不同气氛下飞秒激光诱导硅表面微结构[J]. 强激光与粒子束, 2010, 22(11):2749-2753 doi: 10.3788/HPLPB20102211.2749

    Yuan Chunhua, Li Xiaohong, Tang Duochang, et al. Silicon surface microstructures induced by femtosecond laser pulses in different background gases[J]. High Power Laser and Particle Beams, 2010, 22(11): 2749-2753 doi: 10.3788/HPLPB20102211.2749
    [19] 李跃东, 尹唯一, 戴晔. 飞秒脉冲激光的时空变换影响纳米光栅直写过程的研究进展[J]. 激光与光电子学进展, 2020, 57:111403

    Li Yuedong, Yin Weiyi, Dai Ye. Research progress on spatio-temporal coupling of femtosecond pulse laser for direct-writing nanograting[J]. Laser & Optoelectronics Progress, 2020, 57: 111403
    [20] Campillo A J, Pearson J E, Shapiro S L, et al. Fresnel diffraction effects in the design of high-power laser systems[J]. Applied Physics Letters, 1973, 23(2): 85-87. doi: 10.1063/1.1654817
    [21] Wang Yuying, Zhong Lijing, Chen Zhi, et al. Photonic lattice-like waveguides in glass directly written by femtosecond laser for on-chip mode conversion[J]. Chinese Optics Letters, 2022, 20: 031406. doi: 10.3788/COL202220.031406
    [22] 倪晓昌, 孙琦, 陈永耀, 等. 飞秒激光烧蚀材料表面产生纳米波纹结构的实验[J]. 纳米技术与精密工程, 2009, 7(1):47-50

    Ni Xiaochang, Sun Qi, Chen Yongyao, et al. Nano-ripples structure on material surface during femtosecond laser ablation[J]. Nanotechnology and Precision Engineering, 2009, 7(1): 47-50
  • 加载中
图(8)
计量
  • 文章访问数:  248
  • HTML全文浏览量:  99
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-07
  • 修回日期:  2024-05-11
  • 录用日期:  2024-04-29
  • 网络出版日期:  2024-06-05
  • 刊出日期:  2024-07-04

目录

    /

    返回文章
    返回