留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于EBT3胶片开展电子FLASH放疗剂量测量研究

王诗岚 羊奕伟 程德琪 唐镭迅 吴岱

王诗岚, 羊奕伟, 程德琪, 等. 基于EBT3胶片开展电子FLASH放疗剂量测量研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240095
引用本文: 王诗岚, 羊奕伟, 程德琪, 等. 基于EBT3胶片开展电子FLASH放疗剂量测量研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240095
Wang Shilan, Yang Yiwei, Cheng Deqi, et al. Study of electron FLASH radiotherapy dose measurement based on EBT3 film[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240095
Citation: Wang Shilan, Yang Yiwei, Cheng Deqi, et al. Study of electron FLASH radiotherapy dose measurement based on EBT3 film[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240095

基于EBT3胶片开展电子FLASH放疗剂量测量研究

doi: 10.11884/HPLPB202436.240095
基金项目: 国家自然科学基金项目(12375318)
详细信息
    作者简介:

    王诗岚,wangshilan2024@163.com

    通讯作者:

    羊奕伟,winfield1920@126.com

    吴 岱,wudai04@163.com

  • 中图分类号: R144.1

Study of electron FLASH radiotherapy dose measurement based on EBT3 film

  • 摘要: 闪光放疗使用超高剂量率在毫秒时间内将剂量全部注入靶区,其超高剂量率使现有的在线剂量计基本失效,目前通常使用辐射显色胶片来测量剂量。基于中国工程物理研究院应用电子学研究所研制的电子加速器搭建了电子FLASH放疗平台,基于EBT3胶片的快速读出方法,研究了此平台的剂量率范围及剂量分布。实验结果表明,EBT3胶片的快速读出方法可用于电子FLASH放疗的剂量测量,在源皮距100 cm及深度1 cm处剂量率在240~290 Gy/s之间;电子束到达模体表面的平均能量的波动会导致靶区约±5%的剂量波动;面剂量分布满足平坦性在±5%以内和对称性在±3%以内的要求。
  • 图  1  电子FLASH辐照平台示意图(俯视图)

    Figure  1.  Schematic diagram of electron FLASH radiotherapy platform (top view)

    图  2  胶片标定结果

    Figure  2.  Film calibration result

    图  3  不同标定曲线之间测量剂量的相对偏差

    Figure  3.  Relative deviation in measured dose between different calibration curves

    图  4  不同剂量曲线的剂量分布测量结果

    Figure  4.  Measurement results of dose distribution for different dose curves

    图  5  电子束剂量分布特征

    Figure  5.  Electron beam dose distribution characteristics

  • [1] 高峰, 曹璐璐, 羊奕伟, 等. 基于PARTER开展肿瘤Flash-RT研究——设计及计算[J]. 中国医学物理学杂志, 2020, 37(9):1081-1087 doi: 10.3969/j.issn.1005-202X.2020.09.001

    Gao Feng, Cao Lulu, Yang Yiwei, et al. Design and calculation of Flash-RT based on PARTER[J]. Chinese Journal of Medical Physics, 2020, 37(9): 1081-1087 doi: 10.3969/j.issn.1005-202X.2020.09.001
    [2] Ramish Ashraf M, Rahman M, Zhang Rongxiao, et al. Dosimetry for FLASH radiotherapy: a review of tools and the role of radioluminescence and cherenkov emission[J]. Frontiers in Physics, 2020, 8: 328. doi: 10.3389/fphy.2020.00328
    [3] McManus M, Romano F, Lee N D, et al. The challenge of ionisation chamber dosimetry in ultra-short pulsed high dose-rate Very High Energy Electron beams[J]. Scientific Reports, 2020, 10: 9089. doi: 10.1038/s41598-020-65819-y
    [4] Favaudon V, Lentz J M, Heinrich S, et al. Time-resolved dosimetry of pulsed electron beams in very high dose-rate, FLASH irradiation for radiotherapy preclinical studies[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 944: 162537. doi: 10.1016/j.nima.2019.162537
    [5] Chabi S, Van To T H, Leavitt R, et al. Ultra-high-dose-rate FLASH and conventional-dose-rate irradiation differentially affect human acute lymphoblastic leukemia and normal hematopoiesis[J]. International Journal of Radiation Oncology·Biology·Physics, 2021, 109(3): 819-829.
    [6] Zhu Hongyu, Xie Dehuan, Wang Ying, et al. Comparison of intratumor and local immune response between MV X-ray FLASH and conventional radiotherapies[J]. Clinical and Translational Radiation Oncology, 2023, 38: 138-146. doi: 10.1016/j.ctro.2022.11.005
    [7] Vozenin M C, De Fornel P, Petersson K, et al. The advantage of FLASH radiotherapy confirmed in mini-pig and cat-cancer patients[J]. Clinical Cancer Research, 2019, 25(1): 35-42. doi: 10.1158/1078-0432.CCR-17-3375
    [8] Schüler E, Trovati S, King G, et al. Experimental platform for ultra-high dose rate flash irradiation of small animals using a clinical linear accelerator[J]. International Journal of Radiation Oncology·Biology·Physics, 2017, 97(1): 195-203.
    [9] Montay-Gruel P, Petersson K, Jaccard M, et al. Irradiation in a flash: unique sparing of memory in mice after whole brain irradiation with dose rates above 100 Gy/s[J]. Radiotherapy and Oncology, 2017, 124(3): 365-369. doi: 10.1016/j.radonc.2017.05.003
    [10] Petersson K, Jaccard M, Germond J F, et al. High dose-per-pulse electron beam dosimetry - A model to correct for the ion recombination in the Advanced Markus ionization chamber[J]. Medical Physics, 2017, 44(3): 11571167.
    [11] Gotz M, Karsch L, Pawelke J. A new model for volume recombination in plane-parallel chambers in pulsed fields of high dose-per-pulse[J]. Physics in Medicine & Biology, 2017, 62(22): 8634-8654.
    [12] Marinelli M, Felici G, Galante F, et al. Design, realization, and characterization of a novel diamond detector prototype for FLASH radiotherapy dosimetry[J]. Medical Physics, 2022, 49(3): 1902-1910. doi: 10.1002/mp.15473
    [13] Velthuis J J, Page R F, Purves T M, et al. Toward pulse by pulse dosimetry using an SC CVD diamond detector[J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2017, 1(6): 527-533. doi: 10.1109/TRPMS.2017.2750799
    [14] Khanna R, James R, Hugtenburg R. Diamond dosimeter development for real-time microdosimetry and its use in FLASH RT[J]. Physica Medica, 2022, 94 Suppl 1: S102.
    [15] Bourgouin A, Schüller A, Hackel T, et al. Calorimeter for real-time dosimetry of pulsed ultra-high dose rate electron beams[J]. Frontiers in Physics, 2020, 8: 567340. doi: 10.3389/fphy.2020.567340
    [16] Bisogni M G. Inoriganic scintillators development and test of LYSO detector prototype[R]. FRPT 2021.
    [17] Favaudon V, Caplier L, Monceau V, et al. Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice[J]. Science Translational Medicine, 2014, 6: 245ra93.
    [18] Niroomand-Rad A, Chiu-Tsao S T, Grams M P, et al. Report of AAPM Task Group 235 radiochromic film dosimetry: an update to TG-55[J]. Medical Physics, 2020, 47(12): 5986-6025. doi: 10.1002/mp.14497
    [19] Liu K, Jorge P G, Tailor R, et al. Comprehensive evaluation and new recommendations in the use of Gafchromic EBT3 film[J]. Medical Physics, 2023, 50(11): 7252-7262. doi: 10.1002/mp.16593
    [20] Lewis D F, Chan M F. Technical Note: on GAFChromic EBT-XD film and the lateral response artifact[J]. Medical Physics, 2016, 43(2): 643-649. doi: 10.1118/1.4939226
    [21] Palmer A L, Bradley D A, Nisbet A. Evaluation and mitigation of potential errors in radiochromic film dosimetry due to film curvature at scanning[J]. Journal of Applied Clinical Medical Physics, 2015, 16(2): 425-431. doi: 10.1120/jacmp.v16i2.5141
    [22] Borca V C, Pasquino M, Russo G, et al. Dosimetric characterization and use of GAFCHROMIC EBT3 film for IMRT dose verification[J]. Journal of Applied Clinical Medical Physics, 2013, 14(2): 158-171. doi: 10.1120/jacmp.v14i2.4111
    [23] van Battum L J, Hoffmans D, Piersma H, et al. Accurate dosimetry with GafChromic™ EBT film of a 6 MV photon beam in water: what level is achievable?[J]. Medical Physics, 2008, 35(2): 704-716. doi: 10.1118/1.2828196
    [24] Devic S, Seuntjens J, Hegyi G, et al. Dosimetric properties of improved GafChromic films for seven different digitizers[J]. Medical Physics, 2004, 31(9): 2392-2401. doi: 10.1118/1.1776691
    [25] Sukhikh E, Sukhikh L, Malikov E, et al. Uncertainty of measurement absorbed dose by GAFCHROMIC EBT3 dosimeter for clinical electron and photon beams of medical accelerators[J]. Medical Radiology and Radiation Safety, 2019, 64(4): 56-63.
    [26] Sharma M, Singh R, Robert N, et al. Beam quality and dose rate dependency of Gafchromic EBT3 film irradiated with therapeutic megavolt photon beams[J]. Radiation Measurements, 2021, 146: 106632. doi: 10.1016/j.radmeas.2021.106632
    [27] Ferreira B C, Lopes M C, Capela M. Evaluation of an Epson flatbed scanner to read Gafchromic EBT films for radiation dosimetry[J]. Physics in Medicine & Biology, 2009, 54(4): 1073-1085.
    [28] 周婉仪, 宫辉, 邱睿, 等. 金刚石探测器在Flash照射实时剂量测量中的应用[J]. 中华放射医学与防护杂志, 2023, 43(9):729-735 doi: 10.3760/cma.j.cn112271-20230216-00036

    Zhou Wanyi, Gong Hui, Qiu Rui, et al. Feasibility of diamond detector on Flash radiation dosimetry online[J]. Chinese Journal of Radiological Medicine and Protection, 2023, 43(9): 729-735 doi: 10.3760/cma.j.cn112271-20230216-00036
    [29] 翁邓胡, 徐海荣. 高能电子束放射治疗的研究进展[J]. 中国辐射卫生, 2011, 20(3):375-378

    Weng Denghu, Xu Hairong. Research progress in high-energy electron beam radiation therapy[J]. Chinese Journal of Radiological Health, 2011, 20(3): 375-378
    [30] Musolino S V. Absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on standards of absorbed dose to water; Technical Reports Series No. 398[J]. Health Physics, 2001, 81(5): 592-593.
  • 加载中
图(5)
计量
  • 文章访问数:  35
  • HTML全文浏览量:  40
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-14
  • 修回日期:  2024-09-14
  • 录用日期:  2024-09-02
  • 网络出版日期:  2024-09-23

目录

    /

    返回文章
    返回