留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

异步双波长脉冲锁模动力学特性

刘瑞燕 金鑫鑫 段延敏 朱海永

刘瑞燕, 金鑫鑫, 段延敏, 等. 异步双波长脉冲锁模动力学特性[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240099
引用本文: 刘瑞燕, 金鑫鑫, 段延敏, 等. 异步双波长脉冲锁模动力学特性[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240099
Liu Ruiyan, JinXinxin, Duan Yanmin, et al. Dynamics of asynchronous dual-wavelength pulse mode-locking[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240099
Citation: Liu Ruiyan, JinXinxin, Duan Yanmin, et al. Dynamics of asynchronous dual-wavelength pulse mode-locking[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240099

异步双波长脉冲锁模动力学特性

doi: 10.11884/HPLPB202436.240099
基金项目: 国家自然科学基金项目(62205251, 62275200, 62075167);温州市基础性公益科研项目(G2023030);温州大学硕士研究生创新基金项目(3162024003041);
详细信息
    作者简介:

    刘瑞燕,2769533492@qq.com

    通讯作者:

    金鑫鑫,xinxinjin@wzu.edu.cn

  • 中图分类号: TN241

Dynamics of asynchronous dual-wavelength pulse mode-locking

  • 摘要: 设计了基于双峰滤波的掺铒全光纤激光模型,开展异步双波长脉冲锁模动力学特性的数值模拟研究。基于同一噪声作为初始条件,分别将增益光纤饱和能量设置为15、40、55 pJ,模拟结果表明噪声最终分别演化成为单波长脉冲锁模、异步双波长脉冲锁模、孤子分子形式的异步双波长脉冲锁模,其中异步双波长脉冲生成的演化过程经历噪声脉冲、多脉冲锁模与增益竞争、稳定的异步双波长脉冲锁模3个阶段;增益光纤饱和能量的大小直接决定脉冲在增益竞争中的演化方向。脉冲碰撞过程中互相位调制作用引起的脉冲频率移动,导致时域脉冲时间抖动。
  • 图  1  环形激光器模型的结构示意图

    Figure  1.  Schematic diagram of the structure of the ring laser model

    图  2  Esat=40 pJ时Ⅰ到Ⅲ阶段的异步双波长脉冲演化过程

    Figure  2.  Evolution of asynchronous dual-wavelength pulses in stages I to III at Esat=40 pJ:

    (a) Evolution of time-domain waveforms in stages I to III;(b) the spectral evolution process from stage I to III; (c) the cavity energy and EDF gain for different turns; (d) Time-domain waveforms and spectra of typical roundtrip during the evolution of phases I to III.

    图  3  Esat=15 pJ时的异步双波长脉冲演化过程

    Figure  3.  Asynchronous dual-wavelength pulse evolution at Esat = 15 pJ:

    (a) time-domain waveform evolution over 120 Rt; (b) spectral evolution over 120 Rt; (c) cavity energy and EDF gain for different number of turns; (d) time-domain waveform plots at steady mode locking; (e) spectral plots at steady mode locking; and (f) Time-domain waveform of Esat raised to 40 pJ based on the steady state at Esat = 15 pJ. (g) Time-domain waveform with Esat raised to 40 pJ based on the steady state at Esat=15 pJ.

    图  4  Esat=55 pJ时Ⅰ到Ⅲ阶段的异步双波长脉冲演化过程

    Figure  4.  Asynchronous dual-wavelength pulse evolution in stages I to III at Esat=55 pJ:

    (a) Time-domain waveform evolution in stages I to III;(b) the spectral evolution process from stage I to III; (c) the cavity energy and EDF gain for different turns; (d) Time-domain waveforms and spectrograms of typical roundtrip during the evolution of stages I to III.

    图  5  Esat=40 pJ时双波长脉冲碰撞过程的光谱演化

    Figure  5.  Spectral evolution of the collision process of dual-wavelength pulses at Esat=40 pJ

    表  1  环形激光器模型相关参数

    Table  1.   Parameters related to the ring laser model

    parametersLength/mGain coefficientDispersion parameter/(ps2/km)Nonlinear coefficient(γ)transmittance
    Er-doped Fiber1 m5 dB/mGVD:-20.63/(W.km)Gaussian, 40 nm
    SMF1 m0GVD:-233/(W.km)/
    Output Coupler////80%
    Saturable absorber////1-0.7/(1+I/Isat)
    HI10600.5 m0GVD:-73/(W.km)/
    Spectral filter////Dual-peak, 4 nm
    下载: 导出CSV

    表  2  不同Esat条件下的脉冲特性

    Table  2.   Pulse characteristics with different Esat

    Esat (pJ) Pulse width of
    1534 nm (ps)
    Pulse width of
    1566 vnm (ps)
    Spectral width of
    1534 nm (nm)
    Spectral width of
    1566 nm (nm)
    Peak power of
    1534 nm (W)
    Peak power of
    1566 nm (W)
    Pulse energy of
    1534 nm (pJ)
    Pulse energy of
    1566 nm (pJ)
    15 0.42 / 6.88 / 188.01 / 87.28 /
    40 0.33 0.36 8.02 8.11 245.45 254.33 100.65 100.65
    15 to 40 0.30,0.30 / 8.12 / 256.12,256.12 / 201.34 /
    55 0.36,0.36 0.36 7.41 7.65 234.23,233.70 233.72 193.23 96.59
    下载: 导出CSV
  • [1] Bai Chen, Feng Ye, Zhang Weiguang, et al. Dual-parameter femtosecond mode-locking pulse generation in partially shared all-polarization-maintaining fiber Y-shaped oscillator with a single saturable absorber[J]. Opt Laser Technol, 2024, 169: 110021. doi: 10.1016/j.optlastec.2023.110021
    [2] Rodriguez Cuevas A, Kudelin I, Kbashi H, et al. Single-shot dynamics of dual-comb generation in a polarization-multiplexing fiber laser[J]. Sci Rep, 2023, 13: 19673. doi: 10.1038/s41598-023-46999-9
    [3] Cui Yudong, Zhang Yusheng, Huang Lin, et al. Dual-state vector soliton in mode-locked fiber laser[J]. Opt Laser Technol, 2023, 157: 108674. doi: 10.1016/j.optlastec.2022.108674
    [4] Grelu P, Akhmediev N. Group interactions of dissipative solitons in a laser cavity: the case of 2+1[J]. Opt Express, 2004, 12(14): 3184-3189. doi: 10.1364/OPEX.12.003184
    [5] Gu Lin, Cui Zhengwei, Shu Yiqing, et al. Switchable generation of dual-wavelength homogeneous and heterogeneous pulse patterns in a double-cavity fiber laser[J]. Infrared Phys Technol, 2022, 121: 104042. doi: 10.1016/j.infrared.2022.104042
    [6] Guo Zhengru, Liu Tingting, Peng Junsong, et al. Self-started dual-wavelength mode-locking with well-controlled repetition rate difference[J]. J Lightwave Technol, 2021, 39(11): 3575-3581. doi: 10.1109/JLT.2021.3068785
    [7] Huang Xinyu, Xiao Xiaosheng. Harmonic mode-locking of asynchronous dual-wavelength pulses in mode-locked all-fiber lasers[J]. Opt Commun, 2020, 474: 126079. doi: 10.1016/j.optcom.2020.126079
    [8] Li Junwei, Li Heping, Wang Zhuang, et al. Real-time access to collisions between a two-soliton molecule and a soliton singlet in an ultrafast fiber laser[J]. Photonics, 2022, 9: 489. doi: 10.3390/photonics9070489
    [9] Lau K Y, Cui Yudong, Liu Xiaofeng, et al. Real-time investigation of ultrafast dynamics through time-stretched dispersive Fourier transform in mode-locked fiber lasers[J]. Laser Photon Rev, 2023, 17: 2200763. doi: 10.1002/lpor.202200763
    [10] Li Runmin, Shi Haosen, Tian Haochen, et al. All-polarization-maintaining dual-wavelength mode-locked fiber laser based on Sagnac loop filter[J]. Opt Express, 2018, 26(22): 28302-28311. doi: 10.1364/OE.26.028302
    [11] Luo Xing, Tuan T H, Saini T S, et al. Tunable and switchable all-fiber dual-wavelength mode locked laser based on Lyot filtering effect[J]. Opt Express, 2019, 27(10): 14635-14647. doi: 10.1364/OE.27.014635
    [12] Jin Xinxin, Zhan Meng, Hu Guohua, et al. Broad bandwidth dual-wavelength fiber laser simultaneously delivering stretched pulse and dissipative soliton[J]. Opt Express, 2020, 28(5): 6937-6944. doi: 10.1364/OE.385142
    [13] Tao Jianing, Song Pengye, Lv Chenyue, et al. Generation of widely tunable single- and dual-wavelength in a figure-eight mode-locked fiber laser[J]. Opt Laser Technol, 2023, 160: 109107. doi: 10.1016/j.optlastec.2022.109107
    [14] Tao Jianing, Song Pengye, Hou Lei, et al. Synchronously-tunable bidirectional mode-locked fiber laser based on Lyot filtering effect[J]. Opt Laser Technol, 2023, 163: 109391. doi: 10.1016/j.optlastec.2023.109391
    [15] Luo Xing, Tuan T H, Saini T S, et al. Switchable dual-wavelength mode-locked fiber laser using Saganc loop mirror[J]. Opt Commun, 2020, 463: 125457. doi: 10.1016/j.optcom.2020.125457
    [16] Liu Meng, Li Tijian, Luo Aiping, et al. "Periodic" soliton explosions in a dual-wavelength mode-locked Yb-doped fiber laser[J]. Photonics Res, 2020, 8(3): 246-251. doi: 10.1364/PRJ.377966
    [17] Li Zilong, Liu Huanhuan, Zha Zimin, et al. Universal dynamics and deterministic motion control of decoherently seeded temporal dissipative solitons via spectral filtering effect[J]. Photonics Res, 2023, 11(12): 2011-2019. doi: 10.1364/PRJ.500126
    [18] Liu Runmin, Zou Defeng, Niu Shuang, et al. Collision-induced Hopf-type bifurcation reversible transitions in a dual-wavelength femtosecond fiber laser[J]. Opt Express, 2023, 31(2): 1452-1463. doi: 10.1364/OE.479837
    [19] Zhou Yi, Ren Yuxuan, Shi Jiawei, et al. Dynamics of dissipative soliton molecules in a dual-wavelength ultrafast fiber laser[J]. Opt Express, 2022, 30(12): 21931-21942. doi: 10.1364/OE.461092
    [20] 赵欣, 杨建军, 张力钎, 等. 单腔双光梳技术[J]. 中国激光, 2022, 49:1901003 doi: 10.3788/CJL202249.1901003

    Zhao Xin, Yang Jianjun, Zhang Liqian, et al. Single-cavity dual-comb technology[J]. Chin J Lasers, 2022, 49: 1901003 doi: 10.3788/CJL202249.1901003
    [21] Yan Qi, Tian Yiwei, Zhang Tianqi, et al. Machine learning based automatic mode-locking of a dual-wavelength soliton fiber laser[J]. Photonics, 2024, 11: 47. doi: 10.3390/photonics11010047
    [22] Xu Shutao, Zeng Junjie, Sander M Y. Real-time evolution dynamics during transitions between different dissipative soliton states in a single fiber laser[J]. Opt Express, 2023, 31(16): 25850-25864. doi: 10.1364/OE.494827
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  42
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-19
  • 修回日期:  2024-05-14
  • 录用日期:  2024-06-24
  • 网络出版日期:  2024-07-16

目录

    /

    返回文章
    返回